995 resultados para IMPLANT-SUPPORTED OVERDENTURES
Resumo:
Different transfer impression techniques for implant-supported prostheses have been suggested to obtain a working cast. This article describes and illustrates clinical and laboratory pros-thodontic procedures to transfer implant positions with splinted transfer copings and without impression material to form a laboratory analog transfer template. With this technique, a preliminary cast is modified to place the analogs according to a corrected position and obtain the master cast. Although this technique does not record adjacent tissues, it is a simple procedure, less time consuming, and easily performed.
Resumo:
The transfer of an intraoral implant position to the cast for an immediate loading implant is an important step and may be difficult to achieve with commonly used transfer and impression methods. Thus, the purpose of this report is to describe a technique for the use of a surgical template to transfer the implant position for fabrication of a provisional restoration. This technique simplifies the procedure, eliminates the need for taking an impression, avoids surgical site contamination, and maintains an adequate emergence profile during fabrication of the definitive restoration. An indexing technique for transferring the position of the implant from the treated surface after extraction is described.
Resumo:
In implant therapy, a peri-implant bone resorption has been noticed mainly in the first year after prosthesis insertion. This bone remodeling can sometimes jeopardize the outcome of the treatment, especially in areas in which short implants are used and also in aesthetic cases. To avoid this occurrence, the use of platform switching (PS) has been used. This study aimed to evaluate the biomechanical concept of PS with relation to stress distribution using two-dimensional finite element analysis. A regular matching diameter connection of abutment-implant (regular platform group [RPG]) and a PS connection (PS group [PSG]) were simulated by 2 two-dimensional finite element models that reproduced a 2-piece implant system with peri-implant bone tissue. A regular implant (prosthetic platform of 4.1 mm) and a wide implant (prosthetic platform of 5.0 mm) were used to represent the RPG and PSG, respectively, in which a regular prosthetic component of 4.1 mm was connected to represent the crown. A load of 100 N was applied on the models using ANSYS software. The RPG spreads the stress over a wider area in the peri-implant bone tissue (159 MPa) and the implant (1610 MPa), whereas the PSG seems to diminish the stress distribution on bone tissue (34 MPa) and implant (649 MPa). Within the limitation of the study, the PS presented better biomechanical behavior in relation to stress distribution on the implant but especially in the bone tissue (80% less). However, in the crown and retention screw, an increase in stress concentration was observed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background:It has been stated that mandibular overdentures are more satisfactory than conventional dentures, but problems relating to the use of retrospective ratings, lack of control group and sequential provision of treatment may compromise the findings.Objective:To establish a comparison between treatment with conventional complete dentures and implant-retained overdentures in elderly patients by conducting a literature review.Materials and methods:A search of English language peer-review literature was completed using Medline up to 2008 focusing on evidence-based research. Randomised clinical trials (RCTs) and longitudinal prospective studies were favoured in the review, using a general hierarchical classification. Articles that did not focus exclusively on the comparison of patient satisfaction between complete dentures and overdentures were excluded from further evaluation. The last search was conducted in February 2008. Key terms included quality of life, patient satisfaction, edentulism, complete denture and overdenture.Results:Among the 90 articles found in the initial search, 27 met the inclusion criteria. This included 18 RCTs and eight prospective and one cohort study. Most of the articles stated superiority of the mandibular implant-retained overdenture therapy over the conventional complete denture regarding patient satisfaction and quality of life.Conclusion:Even with implant treatment presenting higher patient satisfaction and improvement of quality of life, it was not possible to establish a direct comparison between the studies due to differences in adopted methodologies.
Resumo:
The aim of this study was to evaluate the biomechanical behavior of a mandibular distal extension removable partial denture (DERPD) associated with an implant and different retention system, by bidimensional finite element method. Five hemimandible models with a canine and external hexagon implant at second molar region associated with DERPD were simulated: model A, hemimandible with a canine and a DERPD; model B, hemimandible with a canine and implant with a healing abutment associated to a DERPD; model C, hemimandible with a canine and implant with an ERA attachment associated to a DERPD; model D, hemimandible with a canine and implant with an O'ring attachment associated to a DERPD; and model E, hemimandible with a canine and implant-supported prosthesis associated to a DERPD. Cusp tips were loaded with 50 N of axial or oblique force (45 degrees). Finite element analysis was performed in ANSYS 9.0. model E showed the higher displacement and overload in the supporting tissues; the patterns of stress distribution around the dental apex of models B, C, and D were similar. The association between a DERPD and an osseointegrated implant using the ERA or O'ring systems shows lower stress values. Oblique forces showed higher stress values and displacement. Oblique forces increased the displacement and stress levels in all models; model C displayed the best stress distribution in the supporting structures; healing abutment, ERA, and O'ring systems were viable with RPD, but DERPD association with a single implant-supported prosthesis was nonviable.
Resumo:
Complete and partial loss of maxillary bone may jeopardize oral physiology and generate complications as oral-sinus-nasal communication. Palatal obturator prostheses are a treatment alternative for rehabilitation of these patients. The aim of this study was to assess stress distribution, through photoelasticity, on palatal obturator prostheses associated with different attachment systems (o'ring, bar clip, and o'ring/bar clip) of implants and submitted to relining. Two photoelastic models were fabricated according to an experimental maxillary model with oral-sinus-nasal communication. One model did not present implants, whereas the other included 2 implants with 13.0 mm in length in the left ridge. Four colorless maxillary obturator prostheses were fabricated and relined with soft silicone. One of these prostheses presented no attachment system, whereas the remaining prostheses included attachment systems adapted to the implants. The assembly (model/attachment system/prosthesis) was positioned in a circular polariscope during loading with 100 N at 10 mm/s. The results were based on observation during the experiment and photographic records of stress on the photoelastic model. The bar clip system exhibited the highest stress concentration followed by o'ring/bar clip and o'ring systems. The attachment systems presented different stress distribution with greater concentration surrounding the implants and homogenous stress distribution on the photoelastic model without implants. The highest concentration of fringes occurred, in ascending order, with o'ring, o'ring/bar clip, and bar clip systems.
Resumo:
Purpose This in vitro study compared the dimensional accuracy of two impression techniques Duralay splinted impression copings (D) and metal splinted impression copings (M) for implant supported pros theses Materials and Methods A master cast with four parallel implant abutment analogs and a passive framework were fabricated Vinyl polysiloxane impression material was used for all impressions with a metal stock tray Two groups (D and M) were tested (n = 5) The measurement method employed was just one titanium screw tightened to the framework Each group s measurements were analyzed using software that received the images of a video camera coupled to a stereomicroscope at X100 magnification The results were analyzed statistically (t test) Results The mean values of abutment/framework interface gaps were master cast = 32 mu m (SD 2), group D = 165 mu m (SD 60), and group M = 69 mu m (SD 36) There was a statistically significant difference between the D and M groups (P <= 001) Conclusion Under the limitations of this study, it could be suggested that a more accurate working cast can be fabricated using metal splinted impression copings INT J ORAL MAXILLOFAC IMPLANTS 2010 25 1153-1158
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: This in vitro study evaluated the dimensional accuracy of two impression techniques (tapered and splinted) with two stock trays (plastic and metal) for implant-supported prostheses. Materials and Methods: A master cast with four parallel abutment analogs and a passive framework were fabricated. Polyvinyl siloxane impression material was used for all impressions with two metal stock trays and two plastic stock trays (closed and open trays). Four groups (tapered plastic, splinted plastic, tapered metal, and splinted metal) and a control group (master cast) were tested (n = 5 for each group). After the framework was seated on each of the casts, one abutment screw was tightened, and the marginal gap between the abutment and framework on the other side was measured with a stereomicroscope. The measurements were analyzed with the Kruskal-Wallis one-way analysis of variance on ranks test followed by the Dunn method. Results: The mean values (+/- standard deviations) for the abutment/framework interface gaps were: master cast, 32 +/- 2 mu m; tapered metal, 44 +/- 10 mu m; splinted metal, 69 +/- 28 mu m; tapered plastic, 164 +/- 58 mu m; splinted plastic, 128 +/- 47 mu m. No significant difference was detected between the master cast, tapered metal, and splinted metal groups or between the tapered and splinted plastic groups. Conclusions: In this study, the rigidity of the metal stock tray ensured better results than the plastic stock tray for implant impressions with a high-viscosity impression material (putty). Statistically similar results were obtained using tapered impression copings and splinted squared impression copings. The tapered impression copings technique and splinted squared impression copings technique with a metal stock tray produced precise casts with no statistically significant difference in interface gaps compared to the master cast. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:544-550.
Resumo:
Objectives: The present study used strain gauge analysis to perform an in vitro evaluation of the effect of axial loading on 3 elements of implant-supported partial fixed prostheses, varying the type of prosthetic cylinder and the loading points. Material and methods: Three internal hexagon implants were linearly embedded in a polyurethane block. Microunit abutments were connected to the implants applying a torque of 20 Ncm, and prefabricated Co-Cr cylinders and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n=5). Four strain gauges (SG) were bonded onto the surface of the block tangentially to the implants, SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments with a 10 Ncm torque and an axial load of 30 kg was applied at five predetermined points (A, B, C, D, E). The data obtained from the strain gauge analyses were analyzed statistically by RM ANOVA and Tukey's test, with a level of significance of p<0.05. Results: There was a significant difference for the loading point (p=0.0001), with point B generating the smallest microdeformation (239.49 mu epsilon) and point D the highest (442.77 mu epsilon). No significant difference was found for the cylinder type (p=0.748). Conclusions: It was concluded that the type of cylinder did not affect in the magnitude of microdeformation, but the axial loading location influenced this magnitude.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The oral rehabilitation of the patients toothless totals presents large difficulties, because diverse factors act limiting the treatment with complete dentures conventional, as severe reabsorption of the alveolar process, generating for the phonetic patient difficulties and of mastication, annoyance, retention lack and stability of the prosthesis. With the emergence of you implant them osseointegratin idealized by Prof o Branemark, these aspects were improved by means of the possibility of new treatment options, as the overdentures tissue-implant-supported. However, the protocol of Branemark demanded a period of scaring from three to six months, owing the patients to await this time for the placement of the final prosthesis. This way, the surgical technique of immediate load was proposed to abbreviate this period, improving the transition phase, at the same time that it reduces the problems psychological associates. This way, the objective of the present study is to carry out a literature revision about the works that used overdentures comparing immediate and late load, the best alternative and factors wrapped in the success of the procedure discussing. © 2008 1995, Editorial Ciencias médicas.