928 resultados para IMMUNE EVASION
Resumo:
Zinc is an essential nutritional component required for normal development and maintenance of immune functions. The possible effects of zinc in upregulating the host immune response during the acute and chronic phases of experimental Chagas` disease were evaluated. In young, infected and Zn-supplemented animals, higher concentrations of IFN-gamma and NO were observed. During the chronic phase, decreased concentrations of NO and IFN-gamma were found for older infected animals that received Zn supplementation. For young animals, hearts from Zn-supplemented groups displayed reduced inflammatory infiltrate, heart weight and number of amastigote burdens. For older, infected and Zn-supplemented animals amastigote nests were absent with reduced inflammatory cell infiltrate. This study identifies a potentially novel therapeutic approach that could control the parasite load during acute phase of disease, consequently preventing the deleterious, parasite-elicited responses observed during chronic phase. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Control of the acute phase of Trypanosoma cruzi infection is critically dependent on cytokine-mediated macrophage activation to intracellular killing, natural killer (NK) cells, CD4(+) T cells, CD8(+) T cells and B cells. Cell-mediated immunity in T. cruzi infection is also modulated by cytokines, but in addition to parasite-specific responses, autoimmunity can be also triggered. Importantly, cytokines may also play a role in the cell-mediated immunity of infected subjects. Here we studied the role of cytokines in the regulation of innate and adaptive immunity during the acute phase of T. cruzi infection in Wistar rats. Melatonin is an effective regulator of the immune system. Macrophages and T lymphocytes, which have melatonin receptors, are target cells for the immunomodulatory function of melatonin. In this paper melatonin was orally given via two protocols: prior to and concomitant with infection. Both treatments were highly effective against T. cruzi with enhanced action for the concomitant treatment. The data suggest an up-regulation of the TH-1 immune response as all analyzed parameters, interleukin (IL)-4, IL-10, transforming growth factor-beta 1 and splenocyte proliferation, displayed reduced levels as compared with the untreated counterparts. However, the direct effects of melatonin on immune cells have not been fully investigated during T. cruzi infection. We conclude that in light of the current results, melatonin exerted important therapeutic benefits through its immune regulatory effects.
Resumo:
Calomys callosus is a wild rodent found naturally infected with different Trypanosoma cruzi strains. In the work described here, groups of male and female C callosus were subjected to orchiectomy, ovariectomy and sham operation. One month after surgery, animals were inoculated intraperitoneally (i.p.) with 4 x 10(4) blood trypomastigotes of the ""Y"" strain of T. cruzi. Parasitemia, triglycerides, nitric oxide (NO) and concanavalin A (ConA)-induced proliferation were evaluated. Parasitemia during the course of infection was significantly higher in infected and sham operated animals as compared to infected orchiectomized animals. The opposite was observed in the ovariectomized and infected group. Orchiectomized and infected animals displayed elevated triglyceride levels, as well as a more vigorous immune response, with higher splenocyte proliferation and elevated concentrations of NO. Ovariectomy resulted in an impaired immune response, as observed by a reduction of splenocyte proliferation and NO concentration. The results suggest a pivotal role for gonadal hormones in the modulation of triglyceride levels and the magnitude of the immune response during the acute phase of T. cruzi infection. (C) 2008 Published by Elsevier B.V.
Prolactin: Does it exert an up-modulation of the immune response in Trypanosoma cruzi-infected rats?
Resumo:
During the course of infection by Trypanosma cruzi, the host immune system is involved in distinct, complex interactions with the endocrine system, and prolactin (PRL) is one of several hormones involved in immunoregulation. Although intensive studies attempting to understand the mechanisms that underlie Chagas` disease have been undertaken, there are still some pieces missing from this complex puzzle. Because data are scarce concerning the role of PRL involvement in Chagas` disease and taking into account the existence of crosstalk between neuroendocrine hormones and the immune system, the current study evaluates a possible up-regulation of the cellular immune response triggered by PRL in T. cruzi-infected rats and the role of PRL in reversing immunosuppression caused by the parasitic infection. The data shown herein demonstrate that PRL induces the proliferation of T lymphocytes, coupled with an activation of macrophages and the production of nitric oxide (NO), leading to a reduction in the number of blood trypomastigotes during the peak of parasitemia. During the acute phase of T. cruzi infection, an enhancement of both CD3+CD4+ and CD3+CD8+ T cell populations were observed in infected groups, with the highest numbers of these T cell subsets found in the infected group treated with PRL Because NO is a signaling molecule involved in a number of cellular interactions with components of the immune system and the neuroendocrine system, PRL can be considered an alternative hormone able to up-regulate the host`s immune system, consequently lowering the pathological effects of a T. cruzi infection. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Chagas` disease is considered the sixth most important neglected tropical disease worldwide. Considerable knowledge has been accumulated concerning the role of zinc on cellular immunity. The steroid hormone dehydroepiandrosterone (DHEA) is also known to modulate the immune system. The aims of this paper were to investigate a possible synchronization of their effects on cytokines and NO production and the resistance to Trypanosoma cruzi during the acute phase of infection. It was found that zinc, DHEA or zinc and DHEA supplementation enhanced the immune response, as evidenced by a significant reduction in parasitemia levels. Zinc and DHEA supplementation exerted additive effects on the immune response by elevation of macrophage counts, and by increasing concentrations of IFN-gamma and NO. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
The expression of ABO(H) blood group antigens causes deletion of cells that generate self-specific antibodies to these antigens but this deletion limits adaptive immunity toward pathogens bearing cognate blood group antigens. To explore potential defense mechanisms against such pathogens, given these limitations in adaptive immunity, we screened for innate proteins that could recognize human blood group antigens. Here we report that two innate immune lectins, galectin-4 (Gal-4) and Gal-8, which are expressed in the intestinal tract, recognize and kill human blood group antigen-expressing Escherichia coli while failing to alter the viability of other E. coli strains or other Gram-negative or Gram-positive organisms both in vitro and in vivo. The killing activity of both Gal-4 and Gal-8 is mediated by their C-terminal domains, occurs rapidly and independently of complement and is accompanied by disruption of membrane integrity. These results demonstrate that innate defense lectins can provide immunity against pathogens that express blood group-like antigens on their surface.
Resumo:
Ruthenium compounds in general are well suited for medicinal applications. They have been investigated as immunosuppressants, nitric oxide scavengers, antimicrobial agents, and antimalarials. The aim of this study is to evaluate the immunomodulatory activity of cis-(dichloro) tetraammineruthenium(III) chloride (cis-[RuCl(2)(NH(3))(4)]Cl) on human peripheral blood mononuclear cells (PBMC). The cytotoxic studies performed here revealed that the ruthenium( III) complex presents a cytotoxic activity towards normal human PBMC, only at very high concentration. Results also showed that cis-[ RuCl(2)(NH(3))(4)] Cl presents a dual role on PBMC stimulating proliferation and interleukin-2 (IL-2) production at low concentration and inducing cytotoxicity, inability to proliferate, and inhibiting IL-2 production at high concentration. The noncytotoxic activity of cis-[RuCl(2)(NH(3))(4)] Cl at low concentration towards PBMC, which correlates with the small number of annexin V positive cells and also the absence of DNA fragmentation, suggest that this compound does not induce apoptosis on PBMC. For the first time, we show that, at low concentration (10-100 mu g L(-1)), the cis-[ RuCl(2)(NH(3))(4)] Cl compound induces peripheral blood lymphocytes proliferation and also stimulates them to IL-2 production. These results open a new potential applicability of ruthenium(III) complexes as a possible immune regulatory compound acting as immune suppressor at high concentration and as immune stimulator at low concentration.
Resumo:
Strains of Trypanosoma cruzi are multiclonal populations that can be classified in groups or genotypes, differing in pathogenicity, virulence, and histotropism. In this experiment the distinct behavior of two strains of T. cruzi, MORC-1 and MORC-2, was documented. Blood parasitemia, spleen proliferation, nitric oxide, histopathology of the spleen and heart were used as tools to evaluate parasite persistence. Groups of male mice were separated and divided in three groups: Control (C), Infected (IM-1) and Infected (IM-2). The peak of parasitemia occurred on 10 days post infection for both strains. LPS stimulated animals, infected MORC-2 group displayed significant higher concentrations of NO when compared to infected MORC-1 group (P < 0.05). For ConA stimulated lymphoproliferation, infected MORC-1 group displayed higher proliferation index as compared to infected MORC-2 group. An opposite behavior for IL-4 and TNF-alpha was observed according to the strain. For MORC-1 enhanced concentrations of IL-4 were present with concomitant reduced levels of TNF-alpha, while for MORC-2 enhanced concentrations of TNF-alpha and reduced levels of IL-4 were found. The histopathology of heart and spleen showed important differences in which MORC-1 displayed statistically enhanced number of amastigote in the heart and spleen as compared to MORC-2. Concluding, each strain triggered a distinct immune response with enhanced cytokine TH-1 profile for MORC-2 and TH-2 for MORC-1. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Dehydroepiandrosterone (DHEA) has long been considered as a precursor for many steroid hormones. It also enhances the immune responses against a wide range of viral, bacterial, and parasitic pathogens. The aims of this work were to evaluate the influences of exogenous DHEA treatment on Wistar rats infected with the Y strain of Trypanosoma cruzi during the acute and its influence on the chronic phase of infection. Animals were subcutaneous treated with 40 mg/kg body weight/day of DHEA. DHEA treatment promoted increased lymphoproliferative responses as well as enhanced concentrations of NO and IL-12. So, we point in the direction that our results validate the utility of the use of DHEA as an alternative therapy candidate against T cruzi. (C) 2009 Published by Elsevier B.V.
Resumo:
Chemokines are important mediators of the early inflammatory response to infection and modify a wide range of host immune responses. Functional homologs of cellular chemokines have been identified in a number of herpesviruses, suggesting that the subversion of the host chemokine response contributes to the pathogenesis of these viruses. Transcriptional and reverse transcription-PCR analyses demonstrated that the murine cytomegalovirus (MCMV) chemokine homolog, m131, was spliced at the 3' end to the adjacent downstream open reading frame, m129, resulting in a predicted product of 31 kDa, which is significantly larger than most known chemokines. The in vivo impact of m131/129 was investigated by comparing the replication of MCMV mutants having m131/129 deleted (Delta m131/129) with that of wild-type (wt) MCMV. Our studies demonstrate that both wt and Delta m131/129 viruses replicated to equivalent levels during the first 2 to 3 days following in vivo infection. However, histological studies demonstrated that the early inflammatory response elicited by Delta m131/129 was reduced compared with that of wt MCMV. Furthermore, the Delta m131/129 mutants failed to establish a high-titer infection in the salivary glands, These results suggest that m131/129 possesses proinflammatory properties in vivo and is important for the dissemination of MCMV to or infection of the salivary gland. Notably, the Delta m131/129 mutants were cleared more rapidly from the spleen and liver during acute infection compared with wt MCMV. The accelerated clearance of the mutants was dependent on NK cells and cells of the CD4(+) CD8(+) phenotype. These data suggest that m131/129 may also contribute to virus mechanisms of immune system evasion during early infection, possibly through the interference of NK cells and T cells.
Resumo:
Recombinant bacille Calmette-Guerin (BCG) based vaccine delivery systems could potentially share the safety and effectiveness of BCG. We therefore prepared recombinant BCG vaccines which expressed the L1 late protein of the human papillomavirus (HPV) 6b or the E7 early protein of the HPV 16. The two recombinants were evaluated as immunogens in C57BL/6J and BALB/c mice, and compared with a conventional protein/adjuvant system using E7 or L1 mixed with Quil-A adjuvant. rBCG6bL1 and rBCG16E7 primed specific immune responses, represented by DTH, T-proliferation and antibody, and rBCG16E7 induced cytotoxic immune response to E7 protein. The magnitude of the observed responses were less than those elicited by protein/adjuvant vaccine. As recombinant BCG vaccines expressing HPV6bL1 or HPV16E7 persist at low levels in the immunised host, they may be beneficial to prime or retain memory responses to antigens, but are unlikely to be useful as a single component vaccine strategy. (C) 2000 Elsevier science Ltd. All rights reserved.
Resumo:
Peptides that induce and recall T-cell responses are called T-cell epitopes. T-cell epitopes may be useful in a subunit vaccine against malaria. Computer models that simulate peptide binding to MHC are useful for selecting candidate T-cell epitopes since they minimize the number of experiments required for their identification. We applied a combination of computational and immunological strategies to select candidate T-cell epitopes. A total of 86 experimental binding assays were performed in three rounds of identification of HLA-All binding peptides from the six preerythrocytic malaria antigens. Thirty-six peptides were experimentally confirmed as binders. We show that the cyclical refinement of the ANN models results in a significant improvement of the efficiency of identifying potential T-cell epitopes. (C) 2001 by Elsevier Science Inc.
Resumo:
Polydnaviruses are associated with certain parasitoid wasps and are introduced into the body cavity of the host caterpillar during oviposition. Some of the viral genes are expressed in host tissues and corresponding proteins are secreted into the hemocoel causing suppression of the host immune system. The Cotesia rubecula polydnavirus gene product, CrV1, effectively inactivates hemocytes by mediating cytoskeleton break-down. A precondition for the CrV1 function is the incorporation of the extracellular protein by hemocytes. Here, we show that a coiled-coil domain containing a putative leucine zipper is required for CrV1 function, since removal of this domain abolishes binding and uptake of the CrV1 protein by hemocytes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Few studies have demonstrated that innate lymphocytes play a major role in preventing spontaneous tumor formation. We evaluated the development of spontaneous tumors in mice lacking beta-2 microglobulin (beta2m; and thus MHC class I, CD1d, and CD16) and/or perform, since these tumor cells would be expected to activate innate effector cells. Approximately half the cohort of perform gene-targeted mice succumbed to spontaneous disseminated B cell lymphomas and in mice that also lacked beta2m, the lymphomas developed earlier (by more than 100 d) and with greater incidence (84%). B cell lymphomas from perforin/beta2m gene-targeted mice effectively primed cell-mediated cytotoxicity and perform, but not IFN-gamma, IL-12, or IL-18, was absolutely essential for tumor rejection. Activated NK1.1(+) and gammadeltaTCR(+) T cells were abundant at the tumor site, and transplanted tumors were strongly rejected by either, or both, of these cell types. Blockade of a number of different known costimulatory pathways failed to prevent tumor rejection. These results reflect a critical role for NK cells and gammadeltaTCP(+) T cells in innate immune surveillance of B cell lymphomas, mediated by as yet undetermined pathway(s) of tumor recognition.
Resumo:
Proteins stored in insect hemolymph may serve (is a source of amino acids and energy for metabolism, and development. The expression of the main storage proteins was assessed in bacterial-challenged honey bees using real-time (RT)-PCH and Western blot.. After ensuring that. the immune system had, been activated by measuring the ensuing expression (, the innate immune response genes, defensin-1 (def-1) and prophenoloxidase (pro PO), we verified the expression of four genes encoding storage proteins. The levels of vitellogenin (vg) mRNA and of the respective protein. were significantly lowered in bees injected with bacteria or water only (injury). An equivalent response was observed in orally-infected bees. The levels of apolipophorin II/I (apoLP-II/I) and hexamerin (hex 70a) mRNAs did not significantly change, but levels of Hex 70a protein subunit showed a substantial decay after bacterial challenge or injury. Infection also caused a strong reduction in the levels of apoLP-III transcripts. Our findings are consistent with a down-regulation, of the express and accumulation of storage proteins as a consequence of activation of the immune system, suggesting that this phenomenon. represents a strategy to redirect resources to combat injury or infection. (C) 2009 Wiley Periodicals, Inc.