981 resultados para Hydrogen reduction
Resumo:
In this work, the perovskite-type oxides LaNiO3, LaMnO3, La0,7Sr0,3NiO3 and La0,7Sr0,3MnO3 were prepared by co-precipitation and tested in the NO reduction with CO at 400 and 500 ºC for 10 h. The catalysts were characterized by X-ray diffraction, temperature programmed reduction with hydrogen, nitrogen adsorption and chemical analysis. The nonstoichiometric oxygen was quantified by temperature programmed reduction, and the catalytic tests showed that the La0,7Sr0,3MnO3 catalyst presented the higher performance for the reduction reaction of NO with CO. The partial substitution of lanthanum by strontium increased the NO conversion and the N2 yield.
Resumo:
OBJECTIVES: Memantine is an N-methyl-d-aspartate (NMDA) glutamate receptor antagonist used to treat Alzheimer's disease. Previous studies have suggested that receptor blockers act as neuroprotective agents; however, no study has specifically investigated the impact that these drugs have on the heart. We sought to evaluate the effects of memantine on nuclear size reduction in cardiac cells exposed to cold stress. METHOD: We used male EPM-Wistar rats (n=40) divided into 4 groups: 1) Matched control (CON); 2) Memantine-treated rats (MEM); 3) Rats undergoing induced hypothermia (IH) and 4) Rats undergoing induced hypothermia that were also treated with memantine (IHM). Animals in the MEM and IHM groups were treated by oral gavage administration of 20 mg/kg/day memantine over an eight-day period. Animals in the IH and IHM groups were submitted to 4 hours of hypothermia in a controlled environment with a temperature of - 8ºC on the last day of the study. RESULTS: The MEM group had the largest cardiomyocyte nuclear size (151 ± 3.5 μm³ vs. CON: 142 ± 2.3 μm³; p<0.05), while the IH group had the smallest mean value of nuclear size. The nuclear size of the IHM group was preserved (125 ± 2.9 μm³) compared to the IH group (108 ± 1.7 μm³; p<0.05). CONCLUSION: Memantine prevented the nuclear size reduction of cardiomyocytes in rats exposed to cold stress.
Resumo:
Nitrofurazone (NF) presents activity against Chagas' disease, yet it has a high toxicity. Its analog, hydroxymethylnitrofurazone (NFOH), is more potent against Trypanosoma cruzi and much less toxic than the parent drug, NF. The electrochemical reduction of NFOH in an aqueous medium using a glassy carbon electrode (GCE) is presented. By cyclic voltammetry in anacidic medium, one irreversible reduction peak related to hydroxylamine derivative formation was registered, being linearly pH dependent. However, from pH > 7, a reversible reduction peak at a more positive potential appears and corresponds to the formation of a nitro radical anion. The radical-anion kinetic stability was evaluated by Ip(a)/Ip(c) the current ratio of the R-NO(2)/R-NO(2)-redox couple. The nitro radical anion decays with a second-order rate constant (k(2)) of 6.07, 2.06, and 1.44(X 10(3)) L mol(-1) s(-1) corresponding to pH 8.29, 9.29, and 10.2, respectively, with a corresponding half-time life (t(1/2)) of 0.33, 0.97, and 1.4 s for each pH value. By polishing the GCE surface with diamond powder and comparing with the GCE surface polished with alumina, it is shown that the presence of alumina affects the lifetime of the nitro radical anion. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3130082] All rights reserved.
Resumo:
Reduction of the natural sesquiterpene lactones furanoheliangolides with Stryker's reagent is an effective process for producing eremantholides through a biomimetic pathway. Other reduction products are also formed. Oxygenated functions at C-15 of the furanoheliangolide produce an increase in the velocities of the reactions and reduce the chemoselectivity of the reagent.
Resumo:
The synthesis of [Ru(NO(2)) L(bpy)(2)](+) (bpy = 2,2'-bipyridine and L = pyridine (py) and pyrazine (pz)) can be accomplished by addition of [Ru(NO) L(bpy) 2](PF(6))(3) to aqueous solutions of physiological pH. The electrochemical processes of [Ru(NO2) L(bpy) 2]+ in aqueous solution were studied by cyclic voltammetry and differential pulse voltammetry. The anodic scan shows a peak around 1.00 V vs. Ag/AgCl attributed to the oxidation process centered on the metal ion. However, in the cathodic scan a second peak around-0.60 V vs. Ag/AgCl was observed and attributed to the reduction process centered on the nitrite ligand. The controlled reduction potential electrolysis at-0.80 V vs. Ag/AgCl shows NO release characteristics as judged by NO measurement with a NO-sensor. This assumption was confirmed by ESI/MS(+) and spectroelectrochemical experiment where cis-[Ru(bpy)(2)L(H(2)O)](2+) was obtained as a product of the reduction of cis-[Ru(II)(NO(2)) L(bpy)(2)](+). The vasorelaxation observed in denuded aortic rings pre-contracted with 0.1 mu mol L(-1) phenylephrine responded with relaxation in the presence of cis-[RuII(NO2) L(bpy) 2]+. The potential of rat aorta cells to metabolize cis-[RuII(NO(2)) L(bpy)(2)](+) was also followed by confocal analysis. The obtained results suggest that NO release happens by reduction of cis-[RuII(NO(2)) L(bpy)(2)](+) inside the cell. The maximum vasorelaxation was achieved with 1 x 10(-5) mol L(-1) of cis-[RuII(NO(2)) L(bpy)(2)](+) complex.
Resumo:
The central role of reactive oxygen species (ROS) in osteoclast differentiation and in bone homeostasis prompted us to characterize the redox regulatory system of osteoclasts. In this report, we describe the expression and functional characterization of PAMM, a CXXC motif-containing peroxiredoxin 2-like protein expressed in bone marrow monocytes on stimulation with M-CSF and RANKL. Expression of wild-type (but not C to G mutants of the CXXC domain) PAMM in HEK293 cells results in an increased GSH/GSSG ratio, indicating a shift toward a more reduced environment. Expression of PAMM in RAW264.7 monocytes protected cells from hydrogen peroxide-induced oxidative stress, indicating that PAMM regulates cellular redox status. RANKL stimulation of RAW 264.7 cells caused a decrease in the GSH/GSSG ratio (reflecting a complementary increase in ROS). In addition, RANKL-induced osteoclast formation requires phosphorylation and translocation of NF-kappa B and c-Jun. In stably transfected RAW 264.7 cells, PAMM overexpression prevented the reduction of GSH/GSSG induced by RANKL. Concurrently, PAMM expression completely abolished RANKL-induced p100 NF-kappa B and c-Jun activation, as well as osteoclast formation. We conclude that PAMM is a redox regulatory protein that modulates osteoclast differentiation in vitro. PAMM expression may affect bone resorption in vivo and help to maintain bone mass. Antioxid. Redox Signal. 13, 27-37.
Resumo:
Investigations of chaotic particle transport by drift waves propagating in the edge plasma of tokamaks with poloidal zonal flow are described. For large aspect ratio tokamaks, the influence of radial electric field profiles on convective cells and transport barriers, created by the nonlinear interaction between the poloidal flow and resonant waves, is investigated. For equilibria with edge shear flow, particle transport is seen to be reduced when the electric field shear is reversed. The transport reduction is attributed to the robust invariant tori that occur in nontwist Hamiltonian systems. This mechanism is proposed as an explanation for the transport reduction in Tokamak Chauffage Alfven Bresilien [R. M. O. Galvao , Plasma Phys. Controlled Fusion 43, 1181 (2001)] for discharges with a biased electrode at the plasma edge.
Resumo:
Hydrogen bond interactions between acetone and supercritical water are investigated using a combined and sequential Monte Carlo/quantum mechanics (S-MC/QM) approach. Simulation results show a dominant presence of con. gurations with one hydrogen bond for different supercritical states, indicating that this specific interaction plays an important role on the solvation properties of acetone in supercritical water. Using QM MP2/aug-cc-pVDZ the calculated average interaction energy reveals that the hydrogen-bonded acetone-water complex is energetically more stable under supercritical conditions than ambient conditions and its stability is little affected by variations of temperature and/or pressure. All average results reported here are statistically converged.
Resumo:
The adsorption of atomic and molecular hydrogen on armchair and zigzag boron carbonitride nanotubes is investigated within the ab initio density functional theory. The adsorption of atomic H on the BC(2)N nanotubes presents properties which are promising for nanoelectronic applications. Depending on the adsorption site for the H, the Fermi energy moves toward the bottom of the conduction band or toward the top of the valence band, leading the system to exhibit donor or acceptor characteristics, respectively. The H(2) molecules are physisorbed on the BC(2)N surface for both chiralities. The binding energies for the H(2) molecules are slightly dependent on the adsorption site, and they are near to the range to work as a hydrogen storage medium.
Resumo:
This paper presents the fabrication of a nanothick Co-modified film electrochemically synthesized on layer-by-layer (LbL) structures made with dendrimer polyamidoamine/carbon nanotubes (PAMAM/CNT), and its electrocatalytic properties toward H(2)O(2) reduction. Scanning electron microscopy indicated the formation of a homogeneous, 14 nm thick Co film. The porous nature of the PAMAM/CNT LbL film allowed the electrolyte access to the bottom of the electrode, generating a homogenous Co electrodeposit. In addition, the nanostructure based on Co-modified PAMAM/CNT LbL exhibited high electrocatalytic activity for H(2)O(2) reduction when compared to the Co-free PAMAM/CNT LbL film, which demonstrates the suitability of the system studied for biosensing. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3602200] All rights reserved.
Resumo:
Background: The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. Methodology: Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 angstrom resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. Conclusion: The structure of AaegOBP1 (= AaegOBP39) shares the common fold of insect OBPs with six alpha-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this ""lid"" may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.
Resumo:
The asymmetric unit of the title compound, C(6)H(9)N(2)OS(2)(+)center dot-HSO(4)(-)center dot H(2)O, contains a heterocyclic cation, a hydrogen sulfate anion and a water molecule. There are strong hydrogen bonds between the hydrogen sulfate anions and water molecules, forming an infinite chain along the [010] direction, from which the cations are pendent. The steric, electronic and geometric features are compared with those of similar compounds. In this way, structural relationships are stated in terms of the influence of the sulfate group on the protonation of the heterocycle and on the tautomeric equilibrium in the solid state.
Resumo:
In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VO(x)/Hexa NT's) doped with Co(2)+ and Ni(2+) ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co(2+), S = 3/2 and Ni(2+), S = 1) decreases notably the amount of V(4+) ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V(4+) in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3580252]
Resumo:
Physical and electrochemical properties of nanostructured Ni-doped manganese oxides (MnO(x)) catalysts supported on different carbon powder substrates were investigated so as to characterize any carbon substrate effect toward the oxygen reduction reaction (ORR) kinetics in alkaline medium. These NiMnO(x)/C materials were characterized using physicochemical analyses. Small insertion of Ni atoms in the MnO(x) lattice was observed, which consists of a true doping of the manganese oxide phase. The corresponding NiMnO(x) phase is present in the form of needles or agglomerates, with crystallite sizes in the order of 1.5-6.7 nm (from x-ray diffraction analyses). Layered manganite (MnOOH) phase has been detected for the Monarch 1000-supported NiMnO(x) material, while different species of MnO(x) phases are present at the E350G and MM225 carbons. Electrochemical studies in thin porous coating active layers in the rotating ring-disk electrode setup revealed that the MnO(x) catalysts present better ORR kinetics and electrochemical stability upon Ni doping. The ORR follows the so-called peroxide mechanism on MnO(x)/C catalysts, with the occurrence of minority HO(2)(-) disproportionation reaction. The HO(2)(-) disproportionation reaction progressively increases with the Ni content in NiMnO(x) materials. The catalysts supported on the MM225 and E350G carbons promote faster disproportionation reaction, thus leading to an overall four-electron ORR pathway. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3528439] All rights reserved.
Resumo:
The 'blue copper' enzyme bilirubin oxidase from Myrothecium verrucaria shows significantly enhanced adsorption on a pyrolytic graphite 'edge' (PGE) electrode that has been covalently modified with naphthyl-2-carboxylate functionalities by diazonium coupling. Modified electrodes coated with bilirubin oxidase show electrocatalytic voltammograms for the direct, four-electron reduction of O(2) by bilirubin oxidase with up to four times the current density of an unmodified PGE electrode. Electrocatalytic voltammograms measured with a rapidly rotating electrode (to remove effects of O(2) diffusion limitation) have a complex shape (an almost linear dependence of current on potential below pH 6) that is similar regardless of how PGE is chemically modified. Importantly, the same waveform is observed if bilirubin oxidase is adsorbed on Au(111) or Pt(111) single-crystal electrodes (at which activity is short-lived). The electrocatalytic behavior of bilirubin oxidase, including its enhanced response on chemically-modified PGE, therefore reflects inherent properties that do not depend on the electrode material. The variation of voltammetric waveshapes and potential-dependent (O(2)) Michaelis constants with pH and analysis in terms of the dispersion model are consistent with a change in rate-determining step over the pH range 5-8: at pH 5, the high activity is limited by the rate of interfacial redox cycling of the Type 1 copper whereas at pH 8 activity is much lower and a sigmoidal shape is approached, showing that interfacial electron transfer is no longer a limiting factor. The electrocatalytic activity of bilirubin oxidase on Pt(111) appears as a prominent pre-wave to electrocatalysis by Pt surface atoms, thus substantiating in a single, direct experiment that the minimum overpotential required for O(2) reduction by the enzyme is substantially smaller than required at Pt. At pH 8, the onset of O(2) reduction lies within 0.14 V of the four-electron O(2)/2H(2)O potential.