852 resultados para HumanComputer-Interaction Wearable Hands-free HealthCare Augmented-Reality Moverio Thalmic-Myo
Resumo:
Il mio progetto di ricerca è nato da una riflessione concernente una domanda fondamentale che si pongono gli studiosi della comunicazione digitale: le attuali tecnologie mediali che hanno creato nuovi modelli comunicativi e inaugurato inedite modalità di interrelazione sociale conducono a un dualismo digitale o a una realtà aumentata? Si è cercato di dare una risposta a questo interrogativo attraverso un’indagine compiuta su un social network, Facebook, che è la piattaforma digitale più diffusa nel mondo. L’analisi su Facebook, è stata preceduta da una riflessione sui concetti dello spazio e del tempo elaborati dalla letteratura filosofica e sociologica. Tale riflessione è stata propedeutica all’analisi volta a cogliere l’impatto che hanno avuto sulla relazionalità intersoggettiva e sulle dinamiche di realizzazione del sé l’interazione semantica nello spazio delimitato della piazza tradizionale, la molteplicità e la potenza seduttiva delle offerte comunicative dei media elettronici nella estensione della piazza massmediale e soprattutto la nascita e l’affermazione del cyberspazio come luogo della comunicazione nella piazza digitale. Se la peculiarità della piazza tradizionale è nel farsi dei rapporti face to face e quella della piazza massmediale nella funzione rilevante della fonte rispetto al destinatario, la caratteristica della piazza digitale consiste nella creazione autonoma di un orizzonte inclusivo che comprende ogni soggetto che si collega con la rete il quale, all’interno del network, riveste il doppio ruolo di consumatore e di produttore di messaggi. Con l’avvento dell’online nella prassi della relazionalità sociale si producono e si attuano due piani di interazioni comunicative, uno relativo all’online e l’altro relativo all’offline. L’ipotesi di lavoro che è stata guida della mia ricerca è che la pervasività dell’online conduca all’integrazione dei due segmenti comunicativi: l’esperienza della comunicazione digitale si inserisce nella prassi sociale quotidiana arricchendo i rapporti semantici propri della relazione face to face e influenzandoli profondamente.
Resumo:
La grande crescita e l'enorme distribuzione che hanno avuto negli ultimi tempi i moderni devices mobile (smartphones, tablet, dispositivi wearable, etc...) ha dato l'avvio ad un massiccio sviluppo di applicazioni mobile di qualunque genere, dall'health-care all'AR (Augmented Reality, realtà aumentata), dalle applicazioni social alle applicazioni che offrono servizi all'utente.
Resumo:
A new image-guided microscope using augmented reality overlays has been developed. Unlike other systems, the novelty of our design consists in mounting a precise mini and low-cost tracker directly on the microscope to track the motion of the surgical tools and the patient. Correctly scaled cut-views of the pre-operative computed tomography (CT) stack can be displayed on the overlay, orthogonal to the optical view or even including the direction of a clinical tool. Moreover, the system can manage three-dimensional models for tumours or bone structures and allows interaction with them using virtual tools, showing trajectories and distances. The mean error of the overlay was 0.7 mm. Clinical accuracy has shown results of 1.1-1.8 mm.
Resumo:
CONCLUSION: Our self-developed planning and navigation system has proven its capacity for accurate surgery on the anterior and lateral skull base. With the incorporation of augmented reality, image-guided surgery will evolve into 'information-guided surgery'. OBJECTIVE: Microscopic or endoscopic skull base surgery is technically demanding and its outcome has a great impact on a patient's quality of life. The goal of the project was aimed at developing and evaluating enabling navigation surgery tools for simulation, planning, training, education, and performance. This clinically applied technological research was complemented by a series of patients (n=406) who were treated by anterior and lateral skull base procedures between 1997 and 2006. MATERIALS AND METHODS: Optical tracking technology was used for positional sensing of instruments. A newly designed dynamic reference base with specific registration techniques using fine needle pointer or ultrasound enables the surgeon to work with a target error of < 1 mm. An automatic registration assessment method, which provides the user with a color-coded fused representation of CT and MR images, indicates to the surgeon the location and extent of registration (in)accuracy. Integration of a small tracker camera mounted directly on the microscope permits an advantageous ergonomic way of working in the operating room. Additionally, guidance information (augmented reality) from multimodal datasets (CT, MRI, angiography) can be overlaid directly onto the surgical microscope view. The virtual simulator as a training tool in endonasal and otological skull base surgery provides an understanding of the anatomy as well as preoperative practice using real patient data. RESULTS: Using our navigation system, no major complications occurred in spite of the fact that the series included difficult skull base procedures. An improved quality in the surgical outcome was identified compared with our control group without navigation and compared with the literature. The surgical time consumption was reduced and more minimally invasive approaches were possible. According to the participants' questionnaires, the educational effect of the virtual simulator in our residency program received a high ranking.
Resumo:
Projects in the area of architectural design and urban planning typically engage several architects as well as experts from other professions. While the design and review meetings thus often involve a large number of cooperating participants, the actual design is still done by the individuals in the time in between those meetings using desktop PCs and CAD applications. A real collaborative approach to architectural design and urban planning is often limited to early paper-based sketches.In order to overcome these limitations, we designed and realized the ARTHUR system, an Augmented Reality (AR) enhanced round table to support complex design and planning decisions for architects. WhileAR has been applied to this area earlier, our approach does not try to replace the use of CAD systems but rather integrates them seamlessly into the collaborative AR environment. The approach is enhanced by intuitiveinteraction mechanisms that can be easily con-figured for different application scenarios.
Resumo:
Virtual studio technology plays an important role for modern television productions. Blue-screen matting is a common technique for integrating real actors or moderators into computer generated sceneries. Augmented reality offers the possibility to mix real and virtual in a more general context. This article proposes a new technological approach for combining real studio content with computergenerated information. Digital light projection allows a controlled spatial, temporal, chrominance and luminance modulation of illumination – opening new possibilities for TV studios.
Resumo:
In this paper the software architecture of a framework which simplifies the development of applications in the area of Virtual and Augmented Reality is presented. It is based on VRML/X3D to enable rendering of audio-visual information. We extended our VRML rendering system by a device management system that is based on the concept of a data-flow graph. The aim of the system is to create Mixed Reality (MR) applications simply by plugging together small prefabricated software components, instead of compiling monolithic C++ applications. The flexibility and the advantages of the presented framework are explained on the basis of an exemplary implementation of a classic Augmented Realityapplication and its extension to a collaborative remote expert scenario.
Resumo:
Spatial tracking is one of the most challenging and important parts of Mixed Reality environments. Many applications, especially in the domain of Augmented Reality, rely on the fusion of several tracking systems in order to optimize the overall performance. While the topic of spatial tracking sensor fusion has already seen considerable interest, most results only deal with the integration of carefully arranged setups as opposed to dynamic sensor fusion setups. A crucial prerequisite for correct sensor fusion is the temporal alignment of the tracking data from several sensors. Tracking sensors are typically encountered in Mixed Reality applications, are generally not synchronized. We present a general method to calibrate the temporal offset between different sensors by the Time Delay Estimation method which can be used to perform on-line temporal calibration. By applying Time Delay Estimation on the tracking data, we show that the temporal offset between generic Mixed Reality spatial tracking sensors can be calibrated. To show the correctness and the feasibility of this approach, we have examined different variations of our method and evaluated various combinations of tracking sensors. We furthermore integrated this time synchronization method into our UBITRACK Mixed Reality tracking framework to provide facilities for calibration and real-time data alignment.
Resumo:
Der Beitrag fokussiert die Entwicklung, den Einsatz und die Nutzung von innovativen Technologien zur Unterstützung von Bildungsszenarien in Schule, Hochschule und Weiterbildung. Ausgehend von den verschiedenen Phasen des Corporate Learning, Social Learning, Mobile Learning und Intelligent Learning wird in einem ersten Abschnitt das Nutzungsverhalten von Technologien durch Kinder, Jugendliche und (junge) Erwachsene in Schule, Studium und Lehre betrachtet. Es folgt die Darstellung technologischer Entwicklungen auf Basis des Technology Life Cycle und die Konsequenzen von unterschiedlichen Entwicklungszuständen und Reifegraden von Technologien wie Content Learning Management, sozialen Netzwerken, mobilen Endgeräten, multidimensionalen und -modalen Räumen bis hin zu Anwendungen augmentierter Realität und des Internets der Dinge, Dienste und Daten für den Einsatz und die Nutzung in Bildungsszenarien. Nach der Darstellung von Anforderungen an digitale Technologien hinsichtlich Inhalte, Didaktik und Methodik wie etwa hinsichtlich der Erstellung von Inhalten, deren Wiederverwendung, Digitalisierung und Auffindbarkeit sowie Standards werden methodische Hinweise zur Nutzung digitaler Technologien zur Interaktion von Lernenden, von Lehrenden, sozialer Interaktion, kollaborativem Autorieren, Kommentierung, Evaluation und Begutachtung gegeben. Abschließend werden - differenziert für Schule und Hochschule - Erkenntnisse zu Rahmenbedingungen, Einflussgrößen, hemmenden und fördernden Faktoren sowie Herausförderungen bei der Einführung und nachhaltigen Implementation digitaler Technologien im schulischen Unterricht, in Lehre, Studium und Weiterbildung im Überblick zusammengefasst.
Resumo:
Building Information Modelling (BIM) provides a shared source of information about a built asset, which creates a collaborative virtual environment for project teams. Literature suggests that to collaborate efficiently, the relationship between the project team is based on sympathy, obligation, trust and rapport. Communication increases in importance when working collaboratively but effective communication can only be achieved when the stakeholders are willing to act, react, listen and share information. Case study research and interviews with Architecture, Engineering and Construction (AEC) industry experts suggest that synchronous face-to-face communication is project teams’ preferred method, allowing teams to socialise and build rapport, accelerating the creation of trust between the stakeholders. However, virtual unified communication platforms are a close second-preferred option for communication between the teams. Effective methods for virtual communication in professional practice, such as virtual collaboration environments (CVE), that build trust and achieve similar spontaneous responses as face-to-face communication, are necessary to face the global challenges and can be achieved with the right people, processes and technology. This research paper investigates current industry methods for virtual communication within BIM projects and explores the suitability of avatar interaction in a collaborative virtual environment as an alternative to face-to-face communication to enhance collaboration between design teams’ professional practice on a project. Hence, this paper presents comparisons between the effectiveness of these communication methods within construction design teams with results of further experiments conducted to test recommendations for more efficient methods for virtual communication to add value in the workplace between design teams.
Resumo:
This research pursued the conceptualization and real-time verification of a system that allows a computer user to control the cursor of a computer interface without using his/her hands. The target user groups for this system are individuals who are unable to use their hands due to spinal dysfunction or other afflictions, and individuals who must use their hands for higher priority tasks while still requiring interaction with a computer. ^ The system receives two forms of input from the user: Electromyogram (EMG) signals from muscles in the face and point-of-gaze coordinates produced by an Eye Gaze Tracking (EGT) system. In order to produce reliable cursor control from the two forms of user input, the development of this EMG/EGT system addressed three key requirements: an algorithm was created to accurately translate EMG signals due to facial movements into cursor actions, a separate algorithm was created that recognized an eye gaze fixation and provided an estimate of the associated eye gaze position, and an information fusion protocol was devised to efficiently integrate the outputs of these algorithms. ^ Experiments were conducted to compare the performance of EMG/EGT cursor control to EGT-only control and mouse control. These experiments took the form of two different types of point-and-click trials. The data produced by these experiments were evaluated using statistical analysis, Fitts' Law analysis and target re-entry (TRE) analysis. ^ The experimental results revealed that though EMG/EGT control was slower than EGT-only and mouse control, it provided effective hands-free control of the cursor without a spatial accuracy limitation, and it also facilitated a reliable click operation. This combination of qualities is not possessed by either EGT-only or mouse control, making EMG/EGT cursor control a unique and practical alternative for a user's cursor control needs. ^
Resumo:
Negli ultimi anni il crescere della capacità di calcolo dei dispositivi e il diminuire delle loro dimensioni ha permesso di far nascere idee innovative e di esplorare più in dettaglio alcuni settori. Uno di questi è sicuramente quello della realtà aumentata (Augmented reality), infatti, la discussione su questo argomento nasce già negli anni 40 del novecento, ma, per mancanza di mezzi tecnologici adeguati, solo ora si iniziano a realizzare le prime applicazioni che si basano su questa idea e il grande pubblico inizia ad interessarsi all'argomento. La costruzione di applicazioni di realtà aumentata, al momento, è basata sull'utilizzo di alcuni framework che mettono a disposizione dello sviluppatore alcune funzioni molto comuni in questi software, come il tracking di marker e l'utilizzo di bottoni virtuali. Questi strumenti, seppur comodi, non garantiscono sempre la buona progettazione dell'applicazione e tendono a unire insieme parti di logica applicativa e di grafica. Per questo motivo, anche nella ricerca, si stanno cercando di studiare dei metodi in grado di permettere una divisione ottimale dei compiti in modo da ottenere un software riusabile e facilmente mantenibile, ma che permetta anche di sfruttare appieno le potenzialità dell'AR attraverso, per esempio, sistemi distribuiti. Un framework concettuale che rientra in questa categoria è sicuramente quello degli Augmented Worlds, mondi virtuali collegati a quello fisico che ne incrementano le caratteristiche e le possibilità tramite la presenza di entità aumentate. La tesi, quindi, si propone di sviluppare un prototipo di un framework con le caratteristiche sopra citate di estendibilità, utilizzando le piattaforme in questo momento a disposizione e ispirandosi alla visione degli Augmented Worlds.
Resumo:
La tesi presenta una panoramica sull'augmented, virtual e mixed reality, descrivendone le caratteristiche e le modalità di sviluppo. Come caso di studio viene analizzato il dispositivo Microsoft Hololens, descrivendone le caratteristiche concettuali, hardware e software. Per le applicazioni di questo dispositivo viene effettuata una riprogettazione della gestione e del concetto di ologramma all'interno di un'applicazione olografica, analizzandone i motivi e i vantaggi. E' fornita una overview sui dettagli implementativi della riprogettazione al fine di chiarire ogni aspetto dell'applicazione.
Resumo:
The emerging technologies have expanded a new dimension of self – ‘technoself’ driven by socio-technical innovations and taken an important step forward in pervasive learning. Technology Enhanced Learning (TEL) research has increasingly focused on emergent technologies such as Augmented Reality (AR) for augmented learning, mobile learning, and game-based learning in order to improve self-motivation and self-engagement of the learners in enriched multimodal learning environments. These researches take advantage of technological innovations in hardware and software across different platforms and devices including tablets, phoneblets and even game consoles and their increasing popularity for pervasive learning with the significant development of personalization processes which place the student at the center of the learning process. In particular, augmented reality (AR) research has matured to a level to facilitate augmented learning, which is defined as an on-demand learning technique where the learning environment adapts to the needs and inputs from learners. In this paper we firstly study the role of Technology Acceptance Model (TAM) which is one of the most influential theories applied in TEL on how learners come to accept and use a new technology. Then we present the design methodology of the technoself approach for pervasive learning and introduce technoself enhanced learning as a novel pedagogical model to improve student engagement by shaping personal learning focus and setting. Furthermore we describe the design and development of an AR-based interactive digital interpretation system for augmented learning and discuss key features. By incorporating mobiles, game simulation, voice recognition, and multimodal interaction through Augmented Reality, the learning contents can be geared toward learner's needs and learners can stimulate discovery and gain greater understanding. The system demonstrates that Augmented Reality can provide rich contextual learning environment and contents tailored for individuals. Augment learning via AR can bridge this gap between the theoretical learning and practical learning, and focus on how the real and virtual can be combined together to fulfill different learning objectives, requirements, and even environments. Finally, we validate and evaluate the AR-based technoself enhanced learning approach to enhancing the student motivation and engagement in the learning process through experimental learning practices. It shows that Augmented Reality is well aligned with constructive learning strategies, as learners can control their own learning and manipulate objects that are not real in augmented environment to derive and acquire understanding and knowledge in a broad diversity of learning practices including constructive activities and analytical activities.