968 resultados para High reactivity
Resumo:
In this dissertation the pyrolytic conversion of biomass into chemicals and fuels was investigated from the analytical point of view. The study was focused on the liquid (bio-oil) and solid (char) fractions obtainable from biomass pyrolysis. The drawbacks of Py-GC-MS described so far were partially solved by coupling different analytical configurations (Py-GC-MS, Py-GC-MIP-AED and off-line Py-SPE and Py-SPME-GC-MS with derivatization procedures). The application of different techniques allowed a satisfactory comparative analysis of pyrolysis products of different biomass and a high throughput screening on effect of 33 catalysts on biomass pyrolysis. As the results of the screening showed, the most interesting catalysts were those containing copper (able to reduce the high molecular weight fraction of bio-oil without large yield decrease) and H-ZSM-5 (able to entirely convert the bio-oil into “gasoline like” aromatic products). In order to establish the noxious compounds content of the liquid product, a clean-up step was included in the Py-SPE procedure. This allowed to investigate pollutants (PAHs) generation from pyrolysis and catalytic pyrolysis of biomass. In fact, bio-oil from non-catalytic pyrolysis of biomass showed a moderate PAHs content, while the use of H-ZSM-5 catalyst for bio-oil up-grading determined an astonishing high production of PAHs (if compared to what observed in alkanes cracking), indicating an important concern in the substitution fossil fuel with bio-oil derived from biomass. Moreover, the analytical procedures developed in this thesis were directly applied for the detailed study of the most useful process scheme and up-grading route to chemical intermediates (anhydrosugars), transportation fuels or commodity chemicals (aromatic hydrocarbons). In the applied study, poplar and microalgae biomass were investigated and overall GHGs balance of pyrolysis of agricultural residues in Ravenna province was performed. A special attention was put on the comparison of the effect of bio-char different use (fuel or as soil conditioner) on the soil health and GHGs emissions.
Resumo:
Volatile organic compounds play a critical role in ozone formation and drive the chemistry of the atmosphere, together with OH radicals. The simplest volatile organic compound methane is a climatologically important greenhouse gas, and plays a key role in regulating water vapour in the stratosphere and hydroxyl radicals in the troposphere. The OH radical is the most important atmospheric oxidant and knowledge of the atmospheric OH sink, together with the OH source and ambient OH concentrations is essential for understanding the oxidative capacity of the atmosphere. Oceanic emission and / or uptake of methanol, acetone, acetaldehyde, isoprene and dimethyl sulphide (DMS) was characterized as a function of photosynthetically active radiation (PAR) and a suite of biological parameters, in a mesocosm experiment conducted in the Norwegian fjord. High frequency (ca. 1 minute-1) methane measurements were performed using a gas chromatograph - flame ionization detector (GC-FID) in the boreal forests of Finland and the tropical forests of Suriname. A new on-line method (Comparative Reactivity Method - CRM) was developed to directly measure the total OH reactivity (sink) of ambient air. It was observed that under conditions of high biological activity and a PAR of ~ 450 μmol photons m-2 s-1, the ocean acted as a net source of acetone. However, if either of these criteria was not fulfilled then the ocean acted as a net sink of acetone. This new insight into the biogeochemical cycling of acetone at the ocean-air interface has helped to resolve discrepancies from earlier works such as Jacob et al. (2002) who reported the ocean to be a net acetone source (27 Tg yr-1) and Marandino et al. (2005) who reported the ocean to be a net sink of acetone (- 48 Tg yr-1). The ocean acted as net source of isoprene, DMS and acetaldehyde but net sink of methanol. Based on these findings, it is recommended that compound specific PAR and biological dependency be used for estimating the influence of the global ocean on atmospheric VOC budgets. Methane was observed to accumulate within the nocturnal boundary layer, clearly indicating emissions from the forest ecosystems. There was a remarkable similarity in the time series of the boreal and tropical forest ecosystem. The average of the median mixing ratios during a typical diel cycle were 1.83 μmol mol-1 and 1.74 μmol mol-1 for the boreal forest ecosystem and tropical forest ecosystem respectively. A flux value of (3.62 ± 0.87) x 1011 molecules cm-2 s-1 (or 45.5 ± 11 Tg CH4 yr-1 for global boreal forest area) was derived, which highlights the importance of the boreal forest ecosystem for the global budget of methane (~ 600 Tg yr-1). The newly developed CRM technique has a dynamic range of ~ 4 s-1 to 300 s-1 and accuracy of ± 25 %. The system has been tested and calibrated with several single and mixed hydrocarbon standards showing excellent linearity and accountability with the reactivity of the standards. Field tests at an urban and forest site illustrate the promise of the new method. The results from this study have improved current understanding about VOC emissions and uptake from ocean and forest ecosystems. Moreover, a new technique for directly measuring the total OH reactivity of ambient air has been developed and validated, which will be a valuable addition to the existing suite of atmospheric measurement techniques.
Resumo:
The work presented in this thesis tackles some important points concerning the collective properties of two typical categories of molecular crystals, i.e., anthracene derivatives and charge transfer crystals. Anthracene derivatives have constituted the class of materials from which systematical investigations of crystal-to-crystal photodimerization reactions started, developed and have been the subject of a new awakening in the recent years. In this work some of these compounds, namely, 9-cyanoanthacene, 9-anthacenecarboxylic acid and 9-methylanthracene, have been selected as model systems for a phenomenological approach to some key properties of the solid state, investigated by spectroscopic methods. The present results show that, on the basis of the solid state organization and the chemical nature of each compound, photo-reaction dynamics and kinetics display distinctive behaviors, which allows for a classification of the various processes in topochemical, non topochemical, reversible or topophysical. The second part of the thesis was focused on charge transfer crystals, binary systems formed by stoichiometric combinations of the charge donating perylene (D) and the charge accepting tetracyano-quinodimethane (A), this latter also in its fluorinated derivatives. The work was focused on the growth of single crystals, some of which not yet reported in the literature, by PVT technique. Structural and spectroscopic characterizations have been performed, with the aim of determining the degree of charge transfer between donor and acceptor in the co-crystals. An interesting outcome of the systematic search performed in this work is the definition of the experimental conditions which drive the crystal growth of the binary systems either towards the low (1:1) or the high ratio (3:1 or 3:2) stoichiometries.
Resumo:
The biosphere emits copiously volatile organic compounds (VOCs) into the atmosphere, which are removed again depending on the oxidative capacity of the atmosphere and physical processes such as mixing, transport and deposition. Biogenic VOCs react with the primary oxidant of the atmosphere, the hydroxyl radical (OH), and potentially lead to the formation tropospheric ozone and aerosol, which impact regional climate and air quality. The rate of OH decay in the atmosphere, the total OH reactivity is a function of the atmospheric, reactive compound's concentration and reaction velocity with OH. One way to measure the total OH reactivity, the total OH sink, is with the Comparative Reactivity Method - CRM. Basically, the reaction of OH with a reagent (here pyrrole) in clean air and in the presence of atmospheric, reactive molecules is compared. This thesis presents measurements of the total OH reactivity at the biosphere-atmosphere interface to analyze various influences and driving forces. For measurements in natural environment the instrument was automated and a direct, undisturbed sampling method developed. Additionally, an alternative detection system was tested and compared to the originally used detector (Proton Transfer Reaction-Mass Spectrometer, PTR-MS). The GC-PID (Gas Chromatographic Photo-Ionization Detector) was found as a smaller, less expensive, and robust alternative for total OH reactivity measurements. The HUMPPA-COPEC 2010 measurement campaign in the Finish forest was impacted by normal boreal forest emissions as well as prolonged heat and biomass burning emissions. The measurement of total OH reactivity was compared with a comprehensive set of monitored individual species ambient concentration levels. A significant discrepancy between those individually measured OH sinks and the total OH reactivity was observed, which was characterized in detail by the comparison of within and above the forest canopy detected OH reactivity. Direct impact of biogenic emissions on total OH reactivity was examined on Kleiner Feldberg, Germany, 2011. Trans-seasonal measurements of an enclosed Norway spruce branch were conducted via PTR-MS, for individual compound's emission rates, and CRM, for total OH reactivity emission fluxes. Especially during summertime, the individually monitored OH sink terms could not account for the measured total OH reactivity. A controlled oxidation experiment in a low NOx environment was conducted in the EUPHORE reaction chamber (CHEERS, Spain 2011). The concentration levels of the reactant isoprene and its major products were monitored and compared to total OH reactivity measurements as well as to the results of two models. The individually measured compounds could account for the total OH reactivity during this experiment as well as the traditional model-degradation scheme for isoprene (MCM 3.2). Due to previous observations of high OH levels in the isoprene-rich environment of the tropics, a novel isoprene mechanism was recently suggested. In this mechanism (MIME v4) additional OH is generated during isoprene oxidation, which could not be verified in the conditions of the CHEERS experiment.
Resumo:
Hypercoagulability of the blood might partially explain the increased cardiovascular disease risk in posttraumatic stress disorder (PTSD) and is also triggered by anticipatory stress. We hypothesized exaggerated procoagulant reactivity in patients with PTSD in response to a trauma-specific interview that would be moderated by momentary stress levels. We examined 23 patients with interviewer-diagnosed PTSD caused by myocardial infarction (MI) and 21 post-MI patients without PTSD. A second diagnostic (i.e., trauma-specific) interview to assess posttraumatic stress severity was performed after a median follow-up of 26 months (range 12-36). Before that interview patients rated levels of momentary stress (Likert scale 0-10) and had blood collected before and after the interview. The interaction between PTSD diagnostic status at study entry and level of momentary stress before the follow-up interview predicted reactivity of fibrinogen (P=0.036) and d-dimer (P=0.002) to the PTSD interview. Among patients with high momentary stress levels, PTSD patients had greater fibrinogen (P=0.023) and d-dimer (P=0.035) reactivity than non-PTSD patients. Among patients with low momentary stress levels, PTSD patients had less d-dimer reactivity than non-PTSD patients (P=0.024); fibrinogen reactivity did not significantly differ between groups. Momentary stress levels, but not severity of posttraumatic stress, correlated with d-dimer reactivity in PTSD patients (r=0.46, P=0.029). We conclude that momentary stress levels moderated the relationship between PTSD and procoagulant reactivity to a trauma-specific interview. Procoagulant reactivity in post-MI patients with PTSD confronted with their traumatically experienced MI was observed if patients perceived high levels of momentary stress before the interview.
Resumo:
Background Serologic testing algorithms for recent HIV seroconversion (STARHS) provide important information for HIV surveillance. We have shown that a patient's antibody reaction in a confirmatory line immunoassay (INNO-LIATM HIV I/II Score, Innogenetics) provides information on the duration of infection. Here, we sought to further investigate the diagnostic specificity of various Inno-Lia algorithms and to identify factors affecting it. Methods Plasma samples of 714 selected patients of the Swiss HIV Cohort Study infected for longer than 12 months and representing all viral clades and stages of chronic HIV-1 infection were tested blindly by Inno-Lia and classified as either incident (up to 12 m) or older infection by 24 different algorithms. Of the total, 524 patients received HAART, 308 had HIV-1 RNA below 50 copies/mL, and 620 were infected by a HIV-1 non-B clade. Using logistic regression analysis we evaluated factors that might affect the specificity of these algorithms. Results HIV-1 RNA <50 copies/mL was associated with significantly lower reactivity to all five HIV-1 antigens of the Inno-Lia and impaired specificity of most algorithms. Among 412 patients either untreated or with HIV-1 RNA ≥50 copies/mL despite HAART, the median specificity of the algorithms was 96.5% (range 92.0-100%). The only factor that significantly promoted false-incident results in this group was age, with false-incident results increasing by a few percent per additional year. HIV-1 clade, HIV-1 RNA, CD4 percentage, sex, disease stage, and testing modalities exhibited no significance. Results were similar among 190 untreated patients. Conclusions The specificity of most Inno-Lia algorithms was high and not affected by HIV-1 variability, advanced disease and other factors promoting false-recent results in other STARHS. Specificity should be good in any group of untreated HIV-1 patients.
Resumo:
In drug hypersensitivity, change of drug treatment and continuation with a new drug may result in reappearance of drug hypersensitivity symptoms. This is not uncommon in patients with chronic infections requiring continued and long-lasting antibiotic treatments. For the clinician, the question arises whether these symptoms are due to cross-reactivity, are due to a new sensitization or are a reflection of a multiple drug hypersensitivity syndrome. Based on the p-i concept (pharmacological interaction with immune receptors), we propose that the efficient stimulation of T cells by a drug is the sum of drug-T-cell receptor affinity and readiness of the T cell to react, and therefore not constant. It heavily depends on the state of underlying immune activation. Consequently, drug hypersensitivity diseases, which go along with massive immune stimulations and often high serum cytokine values, are themselves risk factors for further drug hypersensitivity. The immune stimulation during drug hypersensitivity may, similar to generalized virus infections, lower the threshold of T-cell reactivity to drugs and cause rapid appearance of drug hypersensitivity symptoms to the second drug. We call the second hypersensitivity reaction a "flare-up" reaction; this is clinically important, as in most cases the second drug may be tolerated again, if the cofactors are missing. Moreover, the second treatment is often too short to cause a relevant sensitization.
Resumo:
Stereotypies in captive animals typically occur under conditions that are stressful for the animals, and there is some anecdotal evidence that stress levels during early stereotypy development predict later stereotypy levels. Based on this and on the involvement of stress in the behavioural sensitization to psychostimulant drugs, it has been hypothesized that stereotypy development might be causally related to stress. To address this question further, we used mice of the commercial outbred stock CD-1 (ICR) and mice of two lines derived from the outbred CD-1 (ICR) strain by selective breeding for high (HR) and low (LR) stress reactivity, respectively, and examined whether genetically driven variation in stress reactivity is associated with variation in the expression of cage-induced stereotypies. From 21 days of age, 10 females of each line were housed in pairs under standard laboratory conditions until they were video recorded for stereotypic behaviour and tested for corticosterone responses in a stress reactivity test (SRT) at 12 weeks of age. As expected, HR females showed a significantly stronger corticosterone response in the SRT than LR females, while ICR females were intermediate. Unexpectedly, however, both HR and LR females showed very low levels of stereotypic behaviour, while ICR females developed the high levels of stereotypies typical for this strain of mouse. Consequently, there was no significant relationship between measures of acute corticosterone reactivity and stereotypy performance, but a trend for reduced recovery of the corticosterone response in the ICR line suggests that variation in recovery rather than the acute response might predict stereotypy levels in these mice. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The thesis investigates the effect of surface treatment with various reducing and oxidizing agents on the quantum yield (QY) of CdSe and CdS quantum dots (QDs). The QDs, as synthesized by the organometallic method, contained defect sites on their surface that trapped photons and prevented their radiative recombination, therefore resulting in adecreased QY. To passivate these defect sites and enhance the QY, the QDs were treated with various reducing and oxidizing agents, including: sodium borohydride (NaBH4), calcium hydride (CaH2), hydrazine (N2H4), benzoyl peroxide (C14H10O4), and tert-butylhydroperoxide (C4H10O2). It was hypothesized that the reducing/oxidizing agents reduced the ligands on the QD surface, causing them to detach, thereby allowing oxygen from atmospheric air to bind to the exposed cadmium. This cadmium oxdide (CdO) layeraround the QD surface satisfied the defect sites and resulted in an increased QY. To correlate what effect the reducing and oxidizing agents were having on the optical properties of the QDs, we investigated these treatments on the following factors:chalcogenide (Se vs. S), ligand (oleylamine vs. OA), coordinating solvent (ODE vs.TOA), and dispersant solvent (chloroform vs. toluene) on the overall optical properties of the QDs. The QY of each sample was calculated before and after the various surface treatments from ultra-violet visible spectroscopy (UV-Vis) and fluorescence spectroscopy data to determine if the treatment was successful.From our results, we found that sodium borohydride was the most effective surface treatment, with 10 of the 12 treatments resulting in an increased QY. Hydrazine, on the other hand, was the least effective treatments, as it quenched the QD fluorescence in every case. From these observations, we hypothesize that the effectiveness of the QD surface treatments was dependent on reaction rate. More specifically, when the surface treatment reaction happened too quickly, we hypothesize that the QDs began to aggregate, resulting in a quenched fluorescence. Furthermore, we believe that the reactionrate is dependent on concentration of the reducing/oxidizing agents, solubility of the agents in each solvent, and reactivity of the agents with water. The quantum yield of the QDs can therefore be maximized by slowing the reaction rate of each surface treatment toa rate that allows for the proper passivation of defect sites.
Resumo:
The antiretroviral drug abacavir (abc) elicits severe drug hypersensitivity reactions in HLA-B*5701(+) individuals. To understand the abc-specific activation of CD8(+) T cells, we generated abc-specific T-cell clones (abc-TCCs). Abc reactivity could not be linked to the metabolism and/or processing of the drug, since abc metabolizing enzymes were not expressed in immune cells and inhibition of the proteasome in APCs did not affect TCC reactivity. Ca(2+) influx assays revealed different reactivity patterns of abc-TCCs. While all TCCs reacted to abc presented on HLA-B*5701 molecules, a minority also reacted immediately to abc in solution. Titration experiments showed that the ability to react immediately to abc correlated significantly with the TCR avidity of the T cells. Modifications of soluble abc concentrations revealed that the reactivity patterns of abc-TCCs were not fixed but dynamic. When TCCs with an intermediate TCR avidity were stimulated with increasing abc concentrations, they showed an accelerated activation kinetic. Thus, they reacted immediately to the drug, similar to the reaction of TCCs of high avidity. The observed immediate activation and the noninvolvement of the proteasome suggest that, in contrast to haptens, abc-specific T-cell stimulation does not require the formation of covalent bonds to produce a neo-antigenic determinant.
Resumo:
CONTEXT: There is strong evidence for a physiological hyperreactivity to stress in systemic hypertension, but data on associated or potentially moderating psychological factors are scarce. OBJECTIVE: The objective of the study was to identify psychological correlates of physiological stress reactivity in systemic hypertension. DESIGN: This was a cross-sectional, quasi-experimentally controlled study. Study participants underwent an acute standardized psychosocial stress task combining public speaking and mental arithmetic in front of an audience. SETTING: The study was conducted in the population in the state of Zurich, Switzerland. SUBJECTS: Subjects included 22 hypertensive and 26 normotensive men (mean +/- sem 44 +/- 2 yr). MAIN OUTCOME MEASURES: We assessed the psychological measures social support, emotional regulation, and cognitive appraisal of the stressful situation. Moreover, we measured salivary cortisol and plasma epinephrine and norepinephrine before and after stress and several times up to 60 min thereafter as well as blood pressure and heart rate. RESULTS: We found poorer hedonistic emotional regulation (HER) and lower perceived social support in hypertensives, compared with normotensives (P < 0.01). Compared with normotensives, hypertensives showed higher cortisol, epinephrine, and norepinephrine secretions after stress (P < 0.038) as well as higher systolic and diastolic blood pressure (P < 0.001). Cortisol reactivity and norepinephrine secretion were highest in hypertensive men with low HER (P < 0.05). In contrast, hypertensives with high HER did not significantly differ from normotensives in both cortisol and norepinephrine secretion after stress. Epinephrine secretion was highest in hypertensives with low social support but was not different between hypertensives with high social support and normotensives. CONCLUSIONS: The findings suggest that both low social support and low HER are associated with elevated stress hormone reactivity in systemic hypertension.
Resumo:
Disturbed ionic and neurotransmitter homeostasis are now recognized to be probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brian injury (TBI). Evidence obtained from animal models indicates that posttraumatic neuronal excitation via excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with intracranial pressure (ICP), outcome, and also with the levels of dialysate glutamate, lactate, and cerebral blood flow (CBF) so as to determine the role of ischemia in this posttraumatic ionic dysfunction. Eighty-five patients with severe TBI (Glasgow Coma Scale score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed by flame photometry, as were dialysate glutamate and dialysate lactate levels, which were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients respectively. Cerebral blood flow studies (stable Xenon--computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, potassium values were increased (dialysate potassium > 1.8 mmol). Mean dialysate potassium (> 2 mmol) was associated with ICP above 30 mm Hg and fatal outcome. Dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate levels (p < 0.0001). Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase of potassium, together with dialysate glutamate and lactate, supports the hypothesis that glutamate induces ionic flux and consequently increases ICP due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered potassium reactivity in cerebral blood vessels after trauma.
Resumo:
BACKGROUND: Natural xenoreactive antibodies (Abs) directed against the Bdi-epitope (Gal alpha 1-3Gal beta) on the cells of non-primate mammals take part in hyperacute rejection of xenotransplanted organs. We found that some Abs, which were one-step affinity purified on Bdi-Sepharose, cross-reacted with the disaccharide Gal alpha 1-4GlcNAc beta. The epitope Gal alpha 1-4GlcNAc has not been identified on mammals or bacterial polysaccharides yet. METHODS: To isolate the antibodies of the corresponding specificity the disaccharide was immobilized on Sepharose and antibodies were affinity purified from pooled serum of blood group O individuals. RESULTS: These one-step purified Abs cross-reacted with Bdi, but after a prior absorption step on Bdi-Sepharose no cross-reactivity with Bdi was observed any longer. Surprisingly, the quantity of anti-Gal alpha 1-4GlcNAc isolated from the same serum pool, 4-7 microg/ml, was equal to that of anti-Bdi or more. Independently of ABO blood groups all the tested healthy donors had anti-Gal alpha 1-4GlcNAc Abs at a similar level. Monospecific anti-Gal alpha 1-4GlcNAc Abs were not cytotoxic towards porcine cells. CONCLUSIONS: 1. The actual concentration of monospecific, xenoreactive Gal alpha 1-3Gal beta Abs in blood may be considerably lower than the value referred to in the literature for 'anti-alpha Gal' or 'anti-Galili' antibodies. 2. Anti-Gal alpha 1-4GlcNAc Abs seem not to be important for xenotransplantation.
Resumo:
This study investigated vascular reactivity in response to acetylcholine, in the presence of acute inhibition of nitric oxide synthase, in the carotid artery and aorta of obese C57Bl6/J mice fed on a high-fat diet for 30 weeks, and of control mice. A subgroup of obese animals was also treated with the ET(A) receptor antagonist darusentan (50 mg x kg(-1) x day(-1)). In vascular rings from control animals, acetylcholine caused endothelium-dependent contractions in the carotid artery, but not in the aorta. In vascular rings from obese mice, contractility to acetylcholine was also evident in the aorta, and that in the carotid artery was increased compared with control mice. ET(A) receptor blockade by darusentan treatment of the obese mice prevented enhanced vasoconstriction to acetylcholine, resulting in mild vasodilatation. Thus obesity increases endothelium-dependent vasoconstriction in the absence of endothelial nitric oxide. This effect can be completely prevented by chronic ET(A) receptor blockade, suggesting that endothelin modulates increased endothelium-dependent vasoconstriction in obesity.
Resumo:
A direct electron transfer process between bacterial cells of electrogenic species Geobacter sulfurreducens (Gs) and electrified electrode surfaces was studied to exploit the reactivity of Gs submonolayers on gold and silver surfaces. A submonolayer of Gs was prepared and studied to explore specifically the heterogeneous electron transfer properties at the bacteria/electrode interface. In situ microscopic techniques characterised the morphology of the Gs submonolayers under the operating conditions. In addition, complementary in situ spectroscopic techniques that allowed us to access in situ molecular information of the Gs with high surface selectivity and sensitivity were employed. The results provided clear evidence that the outermost cytochrome C in Gs is responsible for the heterogeneous electron transfer, which is in direct contact with the metal electrode. Feasibility of single cell in situ studies under operating conditions was demonstrated where the combination of surface-electrochemical tools at the nano- and micro-scale with microbiological approaches can offer unique opportunities for the emerging field of electro-microbiology to explore processes and interactions between microorganisms and electrical devices.