986 resultados para Heat-producing elements (HPEs)
Resumo:
Most studies on the characterisation of deposits on heat exchangers have been based on bulk analysis, neglecting the fine structural features and the compositional profiles of layered deposits. Attempts have been made to fully characterise a fouled stainless steel tube obtained from a quintuple Roberts evaporator of a sugar factory using X-ray diffraction and scanning electron microscopy techniques. The deposit contains three layers at the bottom of the tube and two layers on the other sections and is composed of hydroxyapatite, calcium oxalate dihydrate and an amorphous material. The proportions of these phases varied along the tube height. Energy-dispersive spectroscopy and XRD analysis on the surfaces of the outermost and innermost layers showed that hydroxyapatite was the major phase attached to the tube wall, while calcium oxalate dihydrate (with pits and voids) was the major phase on the juice side. Elemental mapping of the cross-sections of the deposit revealed the presence of a mineral, Si-Mg-Al-Fe-O, which is probably a silicate mineral. Reasons for the defects in the oxalate crystal surfaces, the differences in the crystal size distribution from bottom to the top of the tube and the composite fouling process have been postulated.
Resumo:
Assessment of the condition of connectors in the overhead electricity network has traditionally relied on the heat dissipation or voltage drop from existing load current (50Hz) as a measurable parameter to differentiate between satisfactory and failing connectors. This research has developed a technique which does not rely on the 50Hz current and a prototype connector tester has been developed. In this system a high frequency signal is injected into the section of line under test and measures the resistive voltage drop and the current at the test frequency to yield the resistance in micro-ohms. From the value of resistance a decision as to whether a connector is satisfactory or approaching failure can be made. Determining the resistive voltage drop in the presence of a large induced voltage was achieved by the innovative approach of using a representative sample of the magnetic flux producing the induced voltage as the phase angle reference for the signal processing rather than the phase angle of the current, which can be affected by the presence of nearby metal objects. Laboratory evaluation of the connector tester has validated the measurement technique. The magnitude of the load current (50Hz) has minimal effect on the measurement accuracy. Addition of a suitable battery based power supply system and isolated communications, probably radio and refinement of the printed circuit board design and software are the remaining development steps to a production instrument.