996 resultados para Ground state
Resumo:
The cross sections of the 18 electron photoionization and corresponding shake-up processes for Li atoms in the ground state 1s(2)2s and excited states 1s(2)2p, 1s(2)3p, 1s(2)3p and 1s(2)3d are calculated using the multi-configuration Dirac-Fock method. The latest experimental photoelectron spectrum at hv = 100 eV [Cubaynes D et al. Phys. Rev. Lett. 99 (2007) 213004] has been reproduced by the present theoretical investigation excellently. The relative intensity of the shake-up satellites shows that the effects of correlation and relaxation become more important for the higher excited states of the lithium atom, which are explained very well by the spatial overlap of the initial and final state wavefunctions. In addition, strong dependence of the cross section on the atomic orbitals of the valence electrons are found, especially near the threshold.
Resumo:
Branching ratios and half-lives of alpha-decay to the ground-state rotational bands as well as the high-lying excited states of even-even nuclei have been calculated in the framework of the generalized liquid drop model (GLDM) and Royer's formula that we improved very recently. The calculation covers the isotopic chains from Ra to No in the mass regions 222 <= A <= 252 and 88 <= Z <= 102. The agreement between the calculated results and the experimental data indicates the reliability of investigating the properties of the unfavored alpha-decay with our method, especially the improved Royer's formula, which is very valuable for the analysis of experimental data. In addition, the dependence of half-lives on excitation energies of daughter nuclei has been investigated. It is shown that the influence on half-lives becomes stronger and stronger with the increase of the excitation energies.
Resumo:
Ground state geometries were searched for transition metal trimers Sc-3, Y-3, La-3, Lu-3, Ti-3, Zr-3, and Hf-3 by density functional methods. For all the studied trimers, our calculation indicates that the ground state geometries are either equilateral triangle (Zr-3 and Hf-3) or near equilateral triangle (Ti-3, Sc-3, Y-3, La-3, and Lu-3). For rare earth trimers Sc-3, Y-3, La-3, and Lu-3, isosceles triangle (near equilateral triangle) at quartet state is the ground state. Isosceles triangle at doublet state is the competitive candidate for the ground state. For Zr-3 and Hf-3, equilateral triangle at singlet state is the most stable. For Ti-3, isosceles triangle (near equilateral triangle) at quintet state gives the ground state. For Sc-3, Zr-3, and Hf-3, where experimental results are available, the predicted geometries are in agreement with experiment in which the ground state is equilateral triangle (Zr-3) or fluxional (Sc-3 and Hf-3). For Y-3, the calculated geometry is in agreement with experimental observation and previous theoretical study that Y-3 is a bent molecule for the ground state.
Resumo:
The density matrix resonant two-photon absorption (TPA) theory is applied to a rare-earth ion-doped laser crystal. TPA cross sections for transitions from the ground state to the first 4f5d state in Pr3+:YAG are calculated. The results indicate the density matrix TPA theory is attractive in studying TPA in laser crystals. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The density matrix resonant two-photon absorption (TPA) theory applicable to laser crystals doped with rare earth ions is described. Using this theory, resonant TPA cross sections for transitions from the ground state to the second excited state of the 4f5d configuration in cm(4)s Pr3+:Y3Al5O12 are calculated. The peak value of TPA cross section calculated is 2.75 x 10(-50) cm(4)s which is very close to the previous experimental value 4 x 10(-50) cm(4) s. The good agreement of calculated data with measured values demonstrates that the density matrix resonant TPA theory can predict resonant TPA intensity much better than the standard second-order perturbation TPA theory.
Resumo:
For the first time, we have studied the potential-energy curves, spectroscopic terms, vibrational levels, and the spectroscopic constants of the ground and low-lying excited states of NiI by employing the complete active space self-consistent-field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified six low-lying electronic states of NiI with doublet spin multiplicities, including three states of Delta symmetry and three states of Pi symmetry of the molecule within 15 000 cm(-1). The lowest (2)Delta state is identified as the ground state of NiI, and the lowest (2)Pi state is found at 2174.56 cm(-1) above it. These results fully support the previous conclusion of the observed spectra although our computational energy separation of the two states is obviously larger than that of the experimental values. The present calculations show that the low-lying excited states [13.9] (2)Pi and [14.6] (2)Delta are 3 (2)Pi and 3 (2)Delta electronic states of NiI, respectively. Our computed spectroscopic terms, vibrational levels, and spectroscopic constants for them are in good agreement with the experimental data available at present. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally. (c) 2005 American Institute of Physics.
Resumo:
It is known that the exact density functional must give ground-state energies that are piecewise linear as a function of electron number. In this work we prove that this is also true for the lowest-energy excited states of different spin or spatial symmetry. This has three important consequences for chemical applications: the ground state of a molecule must correspond to the state with the maximum highest-occupied-molecular-orbital energy, minimum lowest-unoccupied-molecular-orbital energy, and maximum chemical hardness. The beryllium, carbon, and vanadium atoms, as well as the CH(2) and C(3)H(3) molecules are considered as illustrative examples. Our result also directly and rigorously connects the ionization potential and electron affinity to the stability of spin states.
Resumo:
The resonance Raman spectra of the lowest lying singlet (S-1) state of free-base tetraphenylporphyrin and seven of its isotopomers were recorded under pump-and-probe conditions with a time delay of -2 ns between pump and probe laser pulses, In the S-1 spectra of the isotopomers, as in the ground state, there are dramatic splittings of what appear to be single bands in the natural isotopic abundance spectrum. The most structurally significant bands of the S-1 state were assigned on the basis of the isotope data, In some cases it was necessary to curve fit unresolved bands in the excited-state spectra in order to account for observed intensity ratios and to rationalize isotope shifts, The changes in band positions on excitation to the S-1 state were compared with those from earlier studies on the T-1 state. The changes in band positions were found to be similar For both excited states. Most notable was the similar shift in nu(2), the most widely used marker band for orbital character. The data are interpreted as implying that the lowest lying singlet state is a configuration interaction admixture of b(1u)b(2g) + a(u)b(3g) configurations with the coefficients weighted heavily in favour of b(1n)b(2g), which Is the configuration of the T-1 state. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Nanosecond time-resolved absorption (TA), resonance Raman (TR(3)), and infrared (TRIR) spectra are reported for several complexes [Ru(X)(R)(CO)(2)(alpha-diimine)] (X = Cl, Br, I; R = Me, Et; alpha-diimine = N,N'-diisopropyl-1,4-diaza-1,3-butadiene (iPr-DAB), pyridine-2-carbaldehyde-N-isopropylimine (iPr-PyCa), 2,2'-bipyridine (bpy)). This is the first instance in which the TA, TR(3), and TRIR techniques have been used to probe excited states in the same series of complexes. The TA spectra of the iodide complexes show a transient absorption between 550 and 700 nm, which does not depend on the solvent but shifts to lower energy in the order iPr-DAB > bpy > iPr-PyCa. This band is assigned to an intraligand transition. For the corresponding chloride and bromide complexes this band occurs at higher energy, most probably because of a change of character of the lowest excited state from XLCT to MLCT. The TRIR spectra show an increase in v(CO) (and k(CO)) on promotion to the excited state; however, the shifts Delta v(CO) show a decrease in the order Cl- > Br- > I-. The TR(3) spectra of the excited complexes [Ru(X)(R)(Co)(2)(iPr-DAB)] show v(s)(CN) of the iPr-DAB ligand 50-80 cm(-1) lower in frequency than for the complexes in their ground state. This frequency shift decreases in the order Cl- > Br- > I-, indicating a decrease of CT character of the lowest excited state in this order. However, going from X = Br to I, the effect on Delta v(CO) is much larger than the decrease of Delta v(s)(CN). This different effect on the CO- and CN-stretching frequencies is assigned to a gradual change in character of the lowest excited state from MLCT to XLCT when Cl- is replaced by Br- and I-. This result confirms a similar conclusion derived from previous resonance Raman and emission experiments on these complexes.
Resumo:
The resonance Raman spectra of the ground state and the lowest excited tripler state of free-base tetraphenylporphyrin and six of its isotopomers have been obtained using two-color time-resolved techniques. Ground-state spectra were recorded using low-energy 447 nm probe laser pulses, and triplet-state spectra were probed, with similar pulses, 30 ns after high-energy excitation with 532 nm pump pulses. Polarization data on both the ground and triplet states are also reported. The resonance Raman spectrum of the triplet is very different from that of the ground state but the combination of extensive isotope substitution with polarization data allows bands in the ground state to be assigned and corresponding bands in the tripler state to be located. Isotope shifts of the same bands in the S-0 and T-1 states are similar, implying that the compositions of the vibrational modes do not change significantly on excitation. Two of the strongest bands in the T-1 spectra are associated with phenyl ring substituents; these are shifted less than 5 cm(-1) between the S-0 and T-1 states so that bonding in the phenyl substituents is barely affected by excitation to the T-1 state. The changes in position of the porphyrin ring bands are larger, but still only tens of cm(-1) or less, the main changes in the spectra being due to differences in relative band intensities in the two states. The relatively small shifts in the porphyrin ring band positions which are observed show that the excitation energy is not localized on a single small region of the molecule but is delocalized over the entire porphyrin skeleton. This picture of an excited species with high chemical reactivity, but with individual bonds only slightly perturbed from the ground state, is contrasted with molecules, such as benzophenone, where excitation causes a large perturbation in the bonding within a single functional group.
Resumo:
yambo is an ab initio code for calculating quasiparticle energies and optical properties of electronic systems within the framework of many-body perturbation theory and time-dependent density functional theory. Quasiparticle energies are calculated within the GW approximation for the self-energy. Optical properties are evaluated either by solving the Bethe-Salpeter equation or by using the adiabatic local density approximation. yambo is a plane-wave code that, although particularly suited for calculations of periodic bulk systems, has been applied to a large variety of physical systems. yambo relies on efficient numerical techniques devised to treat systems with reduced dimensionality, or with a large number of degrees of freedom. The code has a user-friendly command-line based interface, flexible 110 procedures and is interfaced to several publicly available density functional ground-state codes.
Resumo:
Electron-impact ionization cross sections are calculated for the ground and metastable states of C+. Com- parisons between perturbative distorted-wave and nonperturbative time-dependent close-coupling calculations find reductions in the peak direct ionization cross sections due to electron coupling effects of approximately 5% for ground state C+ and approximately 15% for metastable state C+. Fairly small excitation-autoionization contributions are found for ground state C+, while larger excitation-autoionization contributions are found for metastable state C+. Comparisons between perturbative distorted-wave and nonperturbative R-matrix with pseudostates calculations find reductions in the peak total ionization cross sections due to electron coupling effects of approximately 15–20 % for ground state C+ and approximately 25–35 % for metastable state C+. Finally, comparisons between theory and experiment find that present and previous C+ crossed-beam measure- ments are in excellent agreement with ground state nonperturbative R-matrix with pseudostates calculations for total ionization cross sections. Combined with previous non-perturbative calculations for C, C2+, and C3+, accurate ionization cross sections and rate coefficients are now available for the ground and metastable states of all carbon ion stages.
Resumo:
A new method for sampling the exact (within the nodal error) ground state distribution and nondiflPerential properties of multielectron systems is developed and applied to firstrow atoms. Calculated properties are the distribution moments and the electronic density at the nucleus (the 6 operator). For this purpose, new simple trial functions are developed and optimized. First, using Hydrogen as a test case, we demonstrate the accuracy of our algorithm and its sensitivity to error in the trial function. Applications to first row atoms are then described. We obtain results which are more satisfactory than the ones obtained previously using Monte Carlo methods, despite the relative crudeness of our trial functions. Also, a comparison is made with results of highly accurate post-Hartree Fock calculations, thereby illuminating the nodal error in our estimates. Taking into account the CPU time spent, our results, particularly for the 8 operator, have a relatively large variance. Several ways of improving the eflSciency together with some extensions of the algorithm are suggested.
Resumo:
Impurity free eluission spectra of HCCCHO and DCCCHO have been rephotographed using the electronic-energy-exchange method with benzene as a carrier gas. The near ultraviolet spectra of ReeCHO and DCCCHO were photographed in a sorption under conditions of high resolution with absorption path lengths up to 100 meters. The emission and absorption spectra of Propynal resulting from 3 n 1 t 1\ - A excitation has been reanalyzed in som.e detail. Botrl of the eH out-of-plane wagging modes were found to have negative anharmonicity. A barrier height of 56.8/0.0 cm- 1 and a nonplanar oft , , equilibrium angle of 17 3 /30 are calculated for the V 10/ lJ 11 modes. The in-plane and out-of-plane v1. brational modes in the 3A." and 1a~. ' elec ronic states of Propynal were subjected to a normal coordinate treatment in the approximat :on of tIle Urey-Bradley force field. From the relative oscillator strengths of the trans1·t1·0ns connect i ng t he v ibrat1•0n1ess lA' , state and t,he V1· bron1·C 3· if levels of the A state, the differences in equilibrium configuration were evaluated from an approximate Franck-Condon analysis based on the ground state normal coordinates. As this treatment gave 512 possible geometrical structures for the upper state, it 4 was necessary to resort to a comparison of the observed and calculated moments of inertia along with chemical intuition to isolate the structure. A test of the correctness of the calculated structure change and the vibrational assignment was raade by evaluating the intensities of the inplane and out-oi-plane fundarnental, sequence, and cross sequellce transitions y the exact Franck-Condon method.
Resumo:
Slab and cluster model spin-polarized calculations have been carried out to study various properties of isolated first-row transition metal atoms adsorbed on the anionic sites of the regular MgO(100) surface. The calculated adsorption energies follow the trend of the metal cohesive energies, indicating that the changes in the metal-support and metal-metal interactions along the series are dominated by atomic properties. In all cases, except for Ni at the generalized gradient approximation level, the number of unpaired electron is maintained as in the isolated metal atom. The energy required to change the atomic state from high to low spin has been computed using the PW91 and B3LYP density-functional-theory-based methods. PW91 fails to predict the proper ground state of V and Ni, but the results for the isolated and adsorbed atom are consistent within the method. B3LYP properly predicts the ground state of all first-row transition atom the high- to low-spin transition considered is comparable to experiment. In all cases, the interaction with the surface results in a reduced high- to low-spin transition energy.