830 resultados para Global sensitivity analysis
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"UILU-ENG 78 1731."
Resumo:
At head of title: Dept. of the Air Force, Office of Aerospace Research, Aeronautical Research Laboratory, Thermomechanics Branch. Contract AF 33(657)-9962.
Resumo:
Deregulations and market practices in power industry have brought great challenges to the system planning area. In particular, they introduce a variety of uncertainties to system planning. New techniques are required to cope with such uncertainties. As a promising approach, probabilistic methods are attracting more and more attentions by system planners. In small signal stability analysis, generation control parameters play an important role in determining the stability margin. The objective of this paper is to investigate power system state matrix sensitivity characteristics with respect to system parameter uncertainties with analytical and numerical approaches and to identify those parameters have great impact on system eigenvalues, therefore, the system stability properties. Those identified parameter variations need to be investigated with priority. The results can be used to help Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform planning studies under the open access environment.
Resumo:
This paper presents a method to analyze the first order eigenvalue sensitivity with respect to the operating parameters of a power system. The method is based on explicitly expressing the system state matrix into sub-matrices. The eigenvalue sensitivity is calculated based on the explicitly formed system state matrix. The 4th order generator model and 4th order exciter system model are used to form the system state matrix. A case study using New England 10-machine 39-bus system is provided to demonstrate the effectiveness of the proposed method. This method can be applied into large scale power system eigenvalue sensitivity with respect to operating parameters.
Resumo:
2000 Mathematics Subject Classi cation: Primary 90C31. Secondary 62C12, 62P05, 93C41.
Resumo:
2000 Mathematics Subject Classification: 62M20, 62M10, 62-07.
Resumo:
The successful performance of a hydrological model is usually challenged by the quality of the sensitivity analysis, calibration and uncertainty analysis carried out in the modeling exercise and subsequent simulation results. This is especially important under changing climatic conditions where there are more uncertainties associated with climate models and downscaling processes that increase the complexities of the hydrological modeling system. In response to these challenges and to improve the performance of the hydrological models under changing climatic conditions, this research proposed five new methods for supporting hydrological modeling. First, a design of experiment aided sensitivity analysis and parameterization (DOE-SAP) method was proposed to investigate the significant parameters and provide more reliable sensitivity analysis for improving parameterization during hydrological modeling. The better calibration results along with the advanced sensitivity analysis for significant parameters and their interactions were achieved in the case study. Second, a comprehensive uncertainty evaluation scheme was developed to evaluate three uncertainty analysis methods, the sequential uncertainty fitting version 2 (SUFI-2), generalized likelihood uncertainty estimation (GLUE) and Parameter solution (ParaSol) methods. The results showed that the SUFI-2 performed better than the other two methods based on calibration and uncertainty analysis results. The proposed evaluation scheme demonstrated that it is capable of selecting the most suitable uncertainty method for case studies. Third, a novel sequential multi-criteria based calibration and uncertainty analysis (SMC-CUA) method was proposed to improve the efficiency of calibration and uncertainty analysis and control the phenomenon of equifinality. The results showed that the SMC-CUA method was able to provide better uncertainty analysis results with high computational efficiency compared to the SUFI-2 and GLUE methods and control parameter uncertainty and the equifinality effect without sacrificing simulation performance. Fourth, an innovative response based statistical evaluation method (RESEM) was proposed for estimating the uncertainty propagated effects and providing long-term prediction for hydrological responses under changing climatic conditions. By using RESEM, the uncertainty propagated from statistical downscaling to hydrological modeling can be evaluated. Fifth, an integrated simulation-based evaluation system for uncertainty propagation analysis (ISES-UPA) was proposed for investigating the effects and contributions of different uncertainty components to the total propagated uncertainty from statistical downscaling. Using ISES-UPA, the uncertainty from statistical downscaling, uncertainty from hydrological modeling, and the total uncertainty from two uncertainty sources can be compared and quantified. The feasibility of all the methods has been tested using hypothetical and real-world case studies. The proposed methods can also be integrated as a hydrological modeling system to better support hydrological studies under changing climatic conditions. The results from the proposed integrated hydrological modeling system can be used as scientific references for decision makers to reduce the potential risk of damages caused by extreme events for long-term water resource management and planning.
Resumo:
The lead author, Nimai Senapati (Post doc), was funded by the European community’s Seventh Framework programme (FP2012-2015) under grant agreement no. 262060 (ExpeER). The research leading to these results has received funding principally from the ANR (ANR-11-INBS-0001), AllEnvi, CNRS-INSU. We would like to thank the National Research Infrastructure ‘Agro-écosystèmes, Cycles Biogéochimique et Biodiversité (SOERE-ACBB http://www.soere-acbb.com/fr/) for their support in field experiment. We are deeply indebted to Christophe deBerranger, Xavier Charrier for their substantial technical assistance and Patricia Laville for her valuables suggestion regarding N2O flux estimation.
Resumo:
Purpose – Curve fitting from unordered noisy point samples is needed for surface reconstruction in many applications -- In the literature, several approaches have been proposed to solve this problem -- However, previous works lack formal characterization of the curve fitting problem and assessment on the effect of several parameters (i.e. scalars that remain constant in the optimization problem), such as control points number (m), curve degree (b), knot vector composition (U), norm degree (k), and point sample size (r) on the optimized curve reconstruction measured by a penalty function (f) -- The paper aims to discuss these issues -- Design/methodology/approach - A numerical sensitivity analysis of the effect of m, b, k and r on f and a characterization of the fitting procedure from the mathematical viewpoint are performed -- Also, the spectral (frequency) analysis of the derivative of the angle of the fitted curve with respect to u as a means to detect spurious curls and peaks is explored -- Findings - It is more effective to find optimum values for m than k or b in order to obtain good results because the topological faithfulness of the resulting curve strongly depends on m -- Furthermore, when an exaggerate number of control points is used the resulting curve presents spurious curls and peaks -- The authors were able to detect the presence of such spurious features with spectral analysis -- Also, the authors found that the method for curve fitting is robust to significant decimation of the point sample -- Research limitations/implications - The authors have addressed important voids of previous works in this field -- The authors determined, among the curve fitting parameters m, b and k, which of them influenced the most the results and how -- Also, the authors performed a characterization of the curve fitting problem from the optimization perspective -- And finally, the authors devised a method to detect spurious features in the fitting curve -- Practical implications – This paper provides a methodology to select the important tuning parameters in a formal manner -- Originality/value - Up to the best of the knowledge, no previous work has been conducted in the formal mathematical evaluation of the sensitivity of the goodness of the curve fit with respect to different possible tuning parameters (curve degree, number of control points, norm degree, etc.)
Resumo:
The text presented below analyses the variation of the performance of a parabolic trough solar collector, when some of the parameters that govern its operation vary due to dirty mirror, degradation etc. In order to reach that point, it will be seen how the human has made use of solar energy with different purposes, through history until it has been reached the point where solar technology has the widespread use and in such a variety of technologies as it has today. As in this project, the technology analysed is the solar collectors, it is going to make more emphasis on solar thermal technology. They will be explained in detail how the parabolic trough collectors are, analysing from its different components, to its thermal performance. Once acquainted with this technology, it will be seen which tests will be carried out. Finally it is going to be explained how the model, used for the simulation and implementation of the relevant tests, has been developed. It will also be explained how the model has been validated, for once validated, proceed to the sensitivity analysis of the collectors.