920 resultados para Geometric Goppa Codes
Resumo:
[Décrets-lois. 1935]
Resumo:
The structure of the brain as a product of morphogenesis is difficult to reconcile with the observed complexity of cerebral connectivity. We therefore analyzed relationships of adjacency and crossing between cerebral fiber pathways in four nonhuman primate species and in humans by using diffusion magnetic resonance imaging. The cerebral fiber pathways formed a rectilinear three-dimensional grid continuous with the three principal axes of development. Cortico-cortical pathways formed parallel sheets of interwoven paths in the longitudinal and medio-lateral axes, in which major pathways were local condensations. Cross-species homology was strong and showed emergence of complex gyral connectivity by continuous elaboration of this grid structure. This architecture naturally supports functional spatio-temporal coherence, developmental path-finding, and incremental rewiring with correlated adaptation of structure and function in cerebral plasticity and evolution.
Resumo:
Currently there are no guidelines within the Manual on Uniform Traffic Control Devices (MUTCD) on construction phasing and maintenance of traffic (MOT) for retrofit construction and maintenance projects involving innovative geometric designs. The research presented in this report addressed this gap in existing knowledge by investigating the state of the practice of construction phasing and MOT for several types of innovative geometric designs including the roundabout, single point urban interchange (SPUI), diverging diamond interchange (DDI), restricted-crossing left turn (RCUT), median U-turn (MUT), and displaced left turn (DLT). This report provides guidelines for transportation practitioners in developing construction phasing and MOT plans for innovative geometric designs. This report includes MOT Phasing Diagrams to assist in the development of MOT strategies for innovative designs. The MOT Phasing Diagrams were developed through a review of literature, survey, interviews with practitioners, and review of plans from innovative geometric design projects. These diagrams are provided as a tool to assist in improving work zone safety and mobility through construction of projects with innovative geometric designs. The aforementioned synthesis of existing knowledge documented existing practices for these types of designs.
Resumo:
Prolyl oligopeptidases cleave peptides on the carboxy side of internal proline residues and their inhibition has potential in the treatment of human brain disorders. Using our docking program fitted, we have designed a series of constrained covalent inhibitors, built from a series of bicyclic scaffolds, to study the optimal shape required for these small molecules. These structures bear nitrile functional groups that we predicted to covalently bind to the catalytic serine of the enzyme. Synthesis and biological assays using human brain-derived astrocytic cells and endothelial cells and human fibroblasts revealed that these compounds act as selective inhibitors of prolyl oligopeptidase activity compared to prolyl-dipeptidyl-aminopeptidase activity, are able to penetrate the cells and inhibit intracellular activities in intact living cells. This integrated computational and experimental study shed light on the binding mode of inhibitors in the enzyme active site and will guide the design of future drug-like molecules.
Resumo:
A new coding technique to be used in steganography is evaluated. The performanceof this new technique is computed and comparisons with the well-known theoreticalupper bound, Hamming upper bound and basic LSB are established.
Resumo:
Diplomityön tavoitteena on paineistimen yksityiskohtainen mallintaminen APROS- ja TRACE- termohydrauliikkaohjelmistoja käyttäen. Rakennetut paineistinmallit testattiin vertaamalla laskentatuloksia paineistimen täyttymistä, tyhjentymistä ja ruiskutusta käsittelevistä erilliskokeista saatuun mittausdataan. Tutkimuksen päätavoitteena on APROSin paineistinmallin validoiminen käyttäen vertailuaineistona PACTEL ATWS-koesarjan sopivia paineistinkokeita sekä MIT Pressurizer- ja Neptunus- erilliskokeita. Lisäksi rakennettiin malli Loviisan ydinvoimalaitoksen paineistimesta, jota käytettiin turbiinitrippitransientin simulointiin tarkoituksena selvittää mahdolliset voimalaitoksen ja koelaitteistojen mittakaavaerosta johtuvat vaikutukset APROSin paineistinlaskentaan. Kokeiden simuloinnissa testattiin erilaisia noodituksia ja mallinnusvaihtoehtoja, kuten entalpian ensimmäisen ja toisen kertaluvun diskretisointia, ja APROSin sekä TRACEn antamia tuloksia vertailtiin kattavasti toisiinsa. APROSin paineistinmallin lämmönsiirtokorrelaatioissa havaittiin merkittävä puute ja laskentatuloksiin saatiin huomattava parannus ottamalla käyttöön uusi seinämälauhtumismalli. Työssä tehdyt TRACE-simulaatiot ovat osa United States Nuclear Regulatory Commissionin kansainvälistä CAMP-koodinkehitys-ja validointiohjelmaa.
Resumo:
El principal objectiu d'aquest treball és implementar i exposar una descripció teòrica per a diferents esquemes de Physical Layer Network Coding. Utilitzant un esquema bàsic com a punt de partida, el projecte presenta la construcció i l'anàlisis de diferents esquemes de comunicació on la complexitat va augmentant a mesura que anem avançant en el projecte. El treball està estructurat en diferents parts: primer, es presenta una introducció a Physical Layer Network Coding i a Lattice Network Codes. A continuació, s'introdueixen les eines matemàtiques necessàries per entendre el CF System. Després, s'analitza i implementa el primer esquema bàsic. A partir del qual, implementem una versió vectorial del CF System i una versió codificada amb un Hamming q-ari. Finalment, s'estudien i implementen diferents estratègies per millorar la matriu de coeficients A.
Resumo:
The future of high technology welded constructions will be characterised by higher strength materials and improved weld quality with respect to fatigue resistance. The expected implementation of high quality high strength steel welds will require that more attention be given to the issues of crack initiation and mechanical mismatching. Experiments and finite element analyses were performed within the framework of continuum damage mechanics to investigate the effect of mismatching of welded joints on void nucleation and coalescence during monotonic loading. It was found that the damage of undermatched joints mainly occurred in the sandwich layer and the damageresistance of the joints decreases with the decrease of the sandwich layer width. The damage of over-matched joints mainly occurred in the base metal adjacent to the sandwich layer and the damage resistance of the joints increases with thedecrease of the sandwich layer width. The mechanisms of the initiation of the micro voids/cracks were found to be cracking of the inclusions or the embrittled second phase, and the debonding of the inclusions from the matrix. Experimental fatigue crack growth rate testing showed that the fatigue life of under-matched central crack panel specimens is longer than that of over-matched and even-matched specimens. Further investigation by the elastic-plastic finite element analysis indicated that fatigue crack closure, which originated from the inhomogeneousyielding adjacent to the crack tip, played an important role in the fatigue crack propagation. The applicability of the J integral concept to the mismatched specimens with crack extension under cyclic loading was assessed. The concept of fatigue class used by the International Institute of Welding was introduced in the parametric numerical analysis of several welded joints. The effect of weld geometry and load condition on fatigue strength of ferrite-pearlite steel joints was systematically evaluated based on linear elastic fracture mechanics. Joint types included lap joints, angle joints and butt joints. Various combinations of the tensile and bending loads were considered during the evaluation with the emphasis focused on the existence of both root and toe cracks. For a lap joint with asmall lack-of-penetration, a reasonably large weld leg and smaller flank angle were recommended for engineering practice in order to achieve higher fatigue strength. It was found that the fatigue strength of the angle joint depended strongly on the location and orientation of the preexisting crack-like welding defects, even if the joint was welded with full penetration. It is commonly believed that the double sided butt welds can have significantly higher fatigue strength than that of a single sided welds, but fatigue crack initiation and propagation can originate from the weld root if the welding procedure results in a partial penetration. It is clearly shown that the fatigue strength of the butt joint could be improved remarkably by ensuring full penetration. Nevertheless, increasing the fatigue strength of a butt joint by increasing the size of the weld is an uneconomical alternative.