989 resultados para Gene Rearrangement, B-Lymphocyte
Resumo:
Baccharis coridifolia is one of the most important poisonous plants to cattle in the South of Brazil. The plant provokes necrotic lesions in the lymphoid tissues and in the gastrointestinal tract of cattle. Experimental administration to mice produces most of the lesions seen in the lymphoid tissues of cattle. This study was conducted to search possible differences in the susceptibility of T and B lymphocyte subpopulations. Lymph nodes, spleen, thymus and gut-associated lymphoid tissue (GALT) of cattle and mice experimentally poisoned were evaluated. The results were evaluated based on cell populations affected or remaining in the organs. Immunostaining for B lymphocytes (anti-BLA-36) identified the germinal center of follicles of the lymph node, spleen and GALT in both species. Immunostaining for T lymphocyte (anti-CD3) identified the paracortical area of the germinal centers of the lymph nodes and GALT, the periarteriolar area of the spleen, and the whole thymus both in cattle and mice. Experimentally poisoned cattle and mice shows necrosis of the germinal center of secondary follicles of the lymph nodes, spleen and GALT, where necrotic cells were immunostained for B and less often for T lymphocyte. Necrotic cells in the paracortical region of the lymph node were less often and were immunostained. Necrotic lesions of the thymus were seen only in mice, with positively stained for T lymphocyte. The distribution of the lesions in the lymphoid tissues and the immunostaining in necrotic cells suggested that the active principles of the plant are cytotoxic to B and T cells.
Resumo:
Supernumerary chromosomes (B chromosomes) occur in approximately 15% of eukaryote species. Although these chromosomes have been extensively studied, knowledge concerning their specific molecular composition is lacking in most cases. The accumulation of repetitive DNAs is one remarkable characteristic of B chromosomes, and the occurrence of distinct types of multigene families, satellite DNAs and some transposable elements have been reported. Here, we describe the organization of repetitive DNAs in the A complement and B chromosome system in the grasshopper species Abracris flavolineata using classical cytogenetic techniques and FISH analysis using probes for five multigene families, telomeric repeats and repetitive C0t-1 DNA fractions. The 18S rRNA and H3 histone multigene families are highly variable and well distributed in A. flavolineata chromosomes, which contrasts with the conservation of U snRNA genes and less variable distribution of 5S rDNA sequences. The H3 histone gene was an extensively distributed with clusters occurring in all chromosomes. Repetitive DNAs were concentrated in C-positive regions, including the pericentromeric region and small chromosomal arms, with some occurrence in C-negative regions, but abundance was low in the B chromosome. Finally, the first demonstration of the U2 snRNA gene in B chromosomes in A. flavolineata may shed light on its possible origin. These results provide new information regarding chromosomal variability for repetitive DNAs in grasshoppers and the specific molecular composition of B chromosomes. © 2013 Bueno et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Polyclonal B-cell activation in mice infected by intragastric route with Yersinia enterocolitica O:8
Resumo:
Human respiratory syncytial virus (HRSV) strains were isolated from nasopharyngeal aspirates collected from 965 children between 2004 and 2005, yielding 424 positive samples. We sequenced the small hydrophobic protein (SH) gene of 117 strains and compared them with other viruses identified worldwide. Phylogenetic analysis showed a low genetic variability among the isolates but allowed us to classify the viruses into different genotypes for both groups, HRSVA and HRSVB. It is also shown that the novel BA-like genotype was well segregated from the others, indicating that the mutations are not limited to the G gene. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVES: The aim of this retrospective study was to investigate the results of T-cell large granular lymphocytic leukemia treatment with fludarabine by assessing the complete hematologic response, the complete molecular response, progression-free survival, and overall survival. METHODS: We evaluated the records of six patients with T-cell large granular lymphocytic leukemia who were treated with fludarabine as a first-, second-, or third-line therapy, at a dose of 40 mg/m(2), for three to five days per month and 6 to 8 cycles. RESULTS: Of the six patients investigated with T-cell large granular lymphocytic leukemia who were treated with fludarabine, five (83.3%) were female, and their median age was 36.5 years (range 18 to 73). The median lymphocyte level was 3.4x10(9)/L (0.5 to 8.9). All patients exhibited a monoclonal T-cell receptor gamma gene rearrangement at diagnosis. Two (33.3%) patients received fludarabine as first-line treatment, two (33.3%) for refractory disease, one (16.6%) for relapsed disease after the suspension of methotrexate treatment due to liver toxicity, and one (16.6%) due to dyspesia. A complete hematologic response was achieved in all cases, and a complete molecular response was achieved in five out six cases (83.3%). During a mean follow-up period of 12 months, both the progression-free survival and overall survival rates were 100%. CONCLUSION: T-cell large granular lymphocytic leukemia demonstrated a high rate of complete hematologic and molecular response to fludarabine, with excellent compliance and tolerability rates. To confirm our results in this rare disease, we believe that fludarabine should be tested in clinical trials as a first-line treatment for T-cell large granular lymphocytic leukemia.
Resumo:
The first part of the research project of the Co-Advisorship Ph.D Thesis was aimed to select the best Bifidobacterium longum strains suitable to set the basis of our study. We were looking for strains with the abilities to colonize the intestinal mucosa and with good adhesion capacities, so that we can test these strains to investigate their ability to induce apoptosis in “damaged” intestinal cells. Adhesion and apoptosis are the two process that we want to study to better understand the role of an adhesion protein that we have previously identified and that have top scores homologies with the recent serpin encoding gene identified in B. longum by Nestlè researchers. Bifidobacterium longum is a probiotic, known for its beneficial effects to the human gut and even for its immunomodulatory and antitumor activities. Recently, many studies have stressed out the intimate relation between probiotic bacteria and the GIT mucosa and their influence on human cellular homeostasis. We focused on the apoptotic deletion of cancer cells induced by B. longum. This has been valued in vitro, performing the incubation of three B.longum strains with enterocyte-like Caco- 2 cells, to evidence DNA fragmentation, a cornerstone of apoptosis. The three strains tested were defined for their adhesion properties using adhesion and autoaggregation assays. These features are considered necessary to select a probiotic strain. The three strains named B12, B18 and B2990 resulted respectively: “strong adherent”, “adherent” and “non adherent”. Then, bacteria were incubated with Caco-2 cells to investigate apoptotic deletion. Cocultures of Caco-2 cells with B. longum resulted positive in DNA fragmentation test, only when adherent strains were used (B12 and B18). These results indicate that the interaction with adherent B. longum can induce apoptotic deletion of Caco-2 cells, suggesting a role in cellular homeostasis of the gastrointestinal tract and in restoring the ecology of damaged colon tissues. These results were used to keep on researching and the strains tested were used as recipient of recombinant techniques aimed to originate new B.longum strains with enhanced capacity of apoptotic induction in “damaged” intestinal cells. To achieve this new goal it was decided to clone the serpin encoding gene of B. longum, so that we can understand its role in adhesion and apoptosis induction. Bifidobacterium longum has immunostimulant activity that in vitro can lead to apoptotic response of Caco-2 cell line. It secretes a hypothetical eukaryotic type serpin protein, which could be involved in this kind of deletion of damaged cells. We had previously characterised a protein that has homologies with the hypothetical serpin of B. longum (DD087853). In order to create Bifidobacterium serpin transformants, a B. longum cosmid library was screened with a PCR protocol using specific primers for serpin gene. After fragment extraction, the insert named S1 was sub-cloned into pRM2, an Escherichia coli - Bifidobacterium shuttle vector, to construct pRM3. Several protocols for B. longum transformation were performed and the best efficiency was obtained using MRS medium and raffinose. Finally bacterial cell supernatants were tested in a dotblot assay to detect antigens presence against anti-antitrypsin polyclonal antibody. The best signal was produced by one starin that has been renamed B. longum BLKS 7. Our research study was aimed to generate transformants able to over express serpin encoding gene, so that we can have the tools for a further study on bacterial apoptotic induction of Caco-2 cell line. After that we have originated new trasformants the next step to do was to test transformants abilities when exposed to an intestinal cell model. In fact, this part of the project was achieved in the Department of Biochemistry of the Medical Faculty of the University of Maribor, guest of the abroad supervisor of the Co-Advisorship Doctoral Thesis: Prof. Avrelija Cencic. In this study we examined the probiotic ability of some bacterial strains using intestinal cells from a 6 years old pig. The use of intestinal mammalian cells is essential to study this symbiosis and a functional cell model mimics a polarised epithelium in which enterocytes are separated by tight junctions. In this list of strains we have included the Bifidobacterium longum BKS7 transformant strain that we have previously originated; in order to compare its abilities. B. longum B12 wild type and B. longum BKS7 transformant and eight Lactobacillus strains of different sources were co-cultured with porcine small intestine epithelial cells (PSI C1) and porcine blood monocytes (PoM2) in Transwell filter inserts. The strains, including Lb. gasseri, Lb. fermentum, Lb. reuterii, Lb. plantarum and unidentified Lactobacillus from kenyan maasai milk and tanzanian coffee, were assayed for activation of cell lines, measuring nitric oxide by Griess reaction, H202 by tetramethylbenzidine reaction and O2 - by cytochrome C reduction. Cytotoxic effect by crystal violet staining and induction on metabolic activity by MTT cell proliferation assay were tested too. Transepithelial electrical resistance (TER) of polarised PSI C1 was measured during 48 hours co-culture. TER, used to observe epithelium permeability, decrease during pathogenesis and tissue becomes permeable to ion passive flow lowering epithelial barrier function. Probiotics can prevent or restore increased permeability. Lastly, dot-blot was achieved against Interleukin-6 of treated cells supernatants. The metabolic activity of PoM2 and PSI C1 increased slightly after co-culture not affecting mitochondrial functions. No strain was cytotoxic over PSI C1 and PoM2 and no cell activation was observed, as measured by the release of NO2, H202 and O2 - by PoM2 and PSI C1. During coculture TER of polarised PSI C1 was two-fold higher comparing with constant TER (~3000 ) of untreated cells. TER raise generated by bacteria maintains a low permeability of the epithelium. During treatment Interleukin-6 was detected in cell supernatants at several time points, confirming immunostimulant activity. All results were obtained using Lactobacillus paracasei Shirota e Carnobacterium divergens as controls. In conclusion we can state that both the list of putative probiotic bacteria and our new transformant strain of B. longum are not harmful when exposed to intestinal cells and could be selected as probiotics, because can strengthen epithelial barrier function and stimulate nonspecific immunity of intestinal cells on a pig cell model. Indeed, we have found out that none of the strains tested that have good adhesion abilities presents citotoxicity to the intestinal cells and that non of the strains tested can induce cell lines to produce high level of ROS, neither NO2. Moreover we have assayed even the capacity of producing certain citokynes that are correlated with immune response. The detection of Interleukin-6 was assayed in all our samples, including B.longum transformant BKS 7 strain, this result indicates that these bacteria can induce a non specific immune response in the intestinal cells. In fact, when we assayed the presence of Interferon-gamma in cells supernatant after bacterial exposure, we have no positive signals, that means that there is no activation of a specific immune response, thus confirming that these bacteria are not recognize as pathogen by the intestinal cells and are certainly not harmful for intestinal cells. The most important result is the measure of Trans Epithelial Electric Resistance that have shown how the intestinal barrier function get strengthen when cells are exposed to bacteria, due to a reduction of the epithelium permeability. We have now a new strain of B. longum that will be used for further studies above the mechanism of apoptotic induction to “damaged cells” and above the process of “restoring ecology”. This strain will be the basis to originate new transformant strains for Serpin encoding gene that must have better performance and shall be used one day even in clinical cases as in “gene therapy” for cancer treatment and prevention.
Resumo:
Synthetic agonists of TLR9 containing novel DNA structures and R'pG (wherein R=1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine) motifs, referred to as immune modulatory oligonucleotides (IMOs), have been shown to stimulate T(H)-1-type-immune responses and potently reverse allergen-induced T(H)-2 responses to T(H)-1 responses in vitro and in vivo in mice. In order to investigate the immunomodulatory potential of IMOs in dogs, canine peripheral blood mononuclear cells (PBMC) from healthy dogs were stimulated with three different IMOs and a control IMO, alone or in combination with concanavalin A (ConA). Lipopolysaccharide (LPS) was used as a positive control for B lymphocyte activation. Carboxyfluorescein diacetate succinimidyl ester and phenotype staining was used to tag proliferating T and B lymphocytes (CD5(+) and CD21(+)) by flow cytometry. Real-time PCR and ELISA were processed to assay cytokine production of IFN-gamma, IL-10, TGF-beta, IL-6 and IL-10. Like LPS, IMOs alone induced neither proliferation of CD5(+) T cells nor CD21(+) B cells, but both LPS and IMO had the capacity to co-stimulate ConA and induced proliferation of B cells. In combination with ConA, one of the IMOs (IMO1) also induced proliferation of T cells. IMO1 also significantly enhanced the expression of IFN-gamma on the mRNA and protein level in canine PBMC, whereas expression of IL-10, TGF-beta and IL-4 mRNAs was not induced by any of the IMOs. These results indicate that in canine PBMC from healthy dogs, IMO1 was able to induce a T(H)-1 immune response including T- and B-cell proliferation.
Resumo:
Multiple sclerosis (MS) is the most common autoimmune disease of the central nerve system and Guillain Barré Syndrome (GBS) is an inflammatory neuropathy involving the peripheral nerves. Anti-myelin immunoglobins may play a role in the demyelination processes of the both diseases. Sulfatide is an abundant glycolipid on myelin and is a candidate target antigen for disease related autoantibodies. The objective of this study was to characterize anti-sulfatide antibodies and compare antibodies from GBS and MS patients with fetal antibodies. Our hypothesis is that some B cells producing disease-associated autoantibodies are derived from or related to B cells of the fetal repertoire. Here we report that reactivity of plasma IgM against sulfatide was elevated in twelve MS patients compared with twelve normal subjects. This result implies that anti-sulfatide antibodies are disease-related. A total of sixteen human B lymphocyte clones producing anti-sulfatide autoantibodies were isolated from MS patients, GBS patients and a human fetus. Seven of the clones were from three MS patients, four of the clones were from three GBS patients and five were from the spleen of a twenty-week human fetus. Sequences have been obtained for the heavy and light chain variable regions (VDJ and VJ regions) of all of the anti-sulfatide immunoglobulins. Seven of the sixteen antibodies used VH3 for the variable region gene of the heavy chain consistent with the rate of VH3 usage in randomly selected B cells. Somatic mutations were significantly more frequent in the patient antibodies than in the fetus and somatic mutations in CDR's (Complementarity Determining Region) were significantly more frequent than in framework regions. No significant difference was found between patients and fetus in length of VH CDRIII. However, it is reported that antibodies from randomly selected normal adult B cells have longer CDRIII lengths than those of the fetus (Sanz I, 1991 Journal of Immunology Sep 1;147(5):1720-9). Our results are consistent with derivation of the precursors of B cells producing these autoantibodies from B cells related to those of the fetal repertoire. These findings are consistent with a model in which quiescent B cells from clones produced early in development undergo proliferation in dysregulated disease states, accumulating somatic mutations and increasing in reactivity toward self-antigens. ^ Epitope mapping and molecular modeling were done to elucidate the relationships between antibody structure and binding characteristics. The autoantibodies were tested for binding activity to three different antigens: sulfatide, galactoceramide and ceramide. Molecular modeling suggests that antibodies with positive charge surrounded by or adjacent to hydrophobic groups in the binding pocket bind to the head of sulfatide via the sulfate group through electrostatic interactions. However, the antibodies with hydrophobic groups separated from positive charges appear to bind to the hydrophobic tail of sulfatide. This observation was supported by a study of the effect of NaCl concentration on antigen binding. The result suggested that electrostatic interactions played a major role in sulfate group binding and that hydrophobic interactions were of greater importance for binding to the ceramide group. Our three-dimensional structure data indicated that epitope specificity of these antibodies is more predictable at the level of tertiary than primary structure and suggested positive selection based on structure occurred in the. formation of those autoantibodies. ^
Resumo:
Although adenovirus can infect a wide range of cell types, lymphocytes are not generally susceptible to adenovirus infection, in part because of the absence of the expression of the cellular receptor for the adenoviral fiber protein. The cellular receptor for adenovirus and coxsackievirus (CAR) recently was cloned and shown to mediate adenoviral entry by interaction with the viral fiber protein. We show that the ectopic expression of CAR in various lymphocyte cell lines, which are almost completely resistant to adenovirus infection, is sufficient to facilitate the efficient transduction of these cells by recombinant adenoviruses. Furthermore, this property of CAR does not require its cytoplasmic domain, consistent with the idea that CAR primarily serves as a high affinity binding site for the adenoviral fiber protein, and that viral entry is mediated by interaction of the viral penton base proteins with cellular integrins. As a demonstration of their functional utility, we used CAR-expressing lymphocytes transduced with an adenovirus expressing Fas ligand to efficiently kill Fas receptor-expressing tumor cells. The ability to efficiently manipulate gene expression in lymphocyte cells by using adenovirus vectors should facilitate the functional characterization of pathways affecting lymphocyte physiology.
Resumo:
Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RAD10 gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogenous APRT locus in ERCC1− and ERCC1+ cells. To detect the full spectrum of gene-altering events, we used a loss-of-function assay in which the parental APRT+ tandem duplication could give rise to APRT− cells by homologous recombination, gene rearrangement, or point mutation. Measurement of rates and analysis of individual APRT− products indicated that gene rearrangements (principally deletions) were increased at least 50-fold, whereas homologous recombination was affected little. The formation of deletions is not caused by a general effect of the ERCC1 deficiency on gene stability, because ERCC1− cell lines with a single wild-type copy of the APRT gene yielded no increase in deletions. Thus, deletion formation is dependent on the tandem duplication, and presumably the process of homologous recombination. Recombination-dependent deletion formation in ERCC1− cells is supported by a significant decrease in a particular class of crossover products that are thought to arise by repair of a heteroduplex intermediate in recombination. We suggest that the ERCC1 gene product in mammalian cells is involved in the processing of heteroduplex intermediates in recombination and that the misprocessed intermediates in ERCC1− cells are repaired by illegitimate recombination.
Resumo:
The hsd genes of Mycoplasma pulmonis encode restriction and modification enzymes exhibiting a high degree of sequence similarity to the type I enzymes of enteric bacteria. The S subunits of type I systems dictate the DNA sequence specificity of the holoenzyme and are required for both the restriction and the modification reactions. The M. pulmonis chromosome has two hsd loci, both of which contain two hsdS genes each and are complex, site-specific DNA inversion systems. Embedded within the coding region of each hsdS gene are a minimum of three sites at which DNA inversions occur to generate extensive amino acid sequence variations in the predicted S subunits. We show that the polymorphic hsdS genes produced by gene rearrangement encode a family of functional S subunits with differing DNA sequence specificities. In addition to creating polymorphisms in hsdS sequences, DNA inversions regulate the phase-variable production of restriction activity because the other genes required for restriction activity (hsdR and hsdM) are expressed only from loci that are oriented appropriately in the chromosome relative to the hsd promoter. These data cast doubt on the prevailing paradigms that restriction systems are either selfish or function to confer protection from invasion by foreign DNA.
Resumo:
Antigen receptors (BCRs) on developing B lymphocytes play two opposing roles—promoting survival of cells that may later bind a foreign antigen and inhibiting survival of cells that bind too strongly to self-antigens. It is not known how these opposing outcomes are signaled by BCRs on immature B cells. Here we analyze the effect of a null mutation in the Syk tyrosine kinase on maturing B cells displaying a transgene-encoded BCR that binds hen egg lysozyme (HEL). In the absence of HEL antigen, HEL-specific BCRs are expressed normally on the surface of Syk-deficient immature B-lineage cells, but this fails to promote maturation beyond the earliest stages of B-lineage commitment. Binding of HEL antigen, nevertheless, triggers phosphorylation of CD79α/β BCR subunits and modulation of receptors from the surface in Syk-deficient cells, but it cannot induce an intracellular calcium response. Continuous binding of low- or high-avidity forms of HEL, expressed as self-antigens, fails to restore the signal needed for maturation. Compared with the effects in the same system of null mutations in other BCR signaling elements, such as CD45 and Lyn kinase, these results indicate that Syk is essential for transmitting a signal that initiates the program of B-lymphocyte maturation.
Resumo:
Prostaglandin E2 (PGE2) is a potent lipid molecule with complex proinflammatory and immunoregulatory properties. PGE2 can shape the immune response by stimulating the production of IgE antibody by B lymphocytes and the synthesis of T-helper type 2 cytokines [e.g., interleukin (IL)-4, IL-10], while inhibiting production of Th1 cytokines (e.g., interferon-gamma, IL-12). It is unknown what type of receptor binds PGE2 and modulates these responses. Recent analyses in nonhematopoietic cells have identified six PGE2 receptors (EP1, EP2, EP3 alpha, EP3 beta, EP3 gamma, and EP4). This investigation examines quiescent B lymphocytes and reports that these cells express mRNA encoding EP1, EP2, EP3 beta, and EP4 receptors. The immunoregulatory functions of each receptor were investigated using small molecule agonists that preferentially bind EP receptor subtypes. Unlike agonists for EP1 and EP3, agonists that bound EP2 or EP2 and EP4 receptors strongly inhibited expression of class II major histocompatibility complex and CD23 and blocked enlargement of mouse B lymphocytes stimulated with IL-4 and/or lipopolysaccharide. PGE2 promotes differentiation and synergistically enhances IL-4 and lipopolysaccharide-driven B-cell immunoglobulin class switching to IgE. Agonists that bound EP2 or EP2 and EP4 receptors also strongly stimulated class switching to IgE. Experiments employing inhibitors of cAMP metabolism demonstrate that the mechanism by which EP2 and EP4 receptors regulate B lymphocyte activity requires elevation of cAMP. In conclusion, these data suggest that antagonists to EP2 and EP4 receptors will be important for diminishing allergic and IgE-mediated asthmatic responses.