916 resultados para Fluorescent conjugation
Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template
Resumo:
We report a new approach for the synthesis of fluorescent and water-soluble Ag nanoclusters, using the common polyelectrolyte poly(methacrylic acid) as the template.
Resumo:
In this work, we report the first application of water-soluble fluorescent Ag nanoclusters in fluorescent sensors. The fluorescence of poly(methacrylic acid) (PMAA)-templated Ag nanoclusters was found to be quenched effectively by Cu2+, but not when other common metal ions were present. By virtue of the specific response toward the analyte, a new, simple, and sensitive fluorescent method for detecting Cu2+ has been developed based on Ag nanoclusters.
Resumo:
Random multimode lasers are achieved in 4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene thin films by introducing silicon dioxide (SiO2) nanoparticles as scatterers. The devices emit a resonance multimode peak at a center wavelength of 640 nm with a mode linewidth less than 0.87 nm. The threshold excitation intensity is as low as 0.25 mJ pulse(-1) cm(-2). It can be seen that the microscopic random resonance cavities can be formed by multiple scattering of SiO2 nanoparticles.
Resumo:
A diblcok copolymer monomethoxy poly (ethylene glycol)-block-poly(L-lactide-co-2-methyl-2-carboxyl-propylene carbonate) (MPEG-b-P(LA-co-MCC)) was obtained by copolymerization of L-lactide (LA) and 2-methyl-2-benzoxycarbonyl-propylene carbonate (MBC) and subsequent catalytic hydrogenation. The pendant carboxyl groups of the copolymer MPEG-b-P(LA-co-MCC) were conjugated with antitumor drug docetaxel and tripeptide arginine-glycine-aspartic acid (RGD), respectively.
Resumo:
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2-NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively.
Resumo:
We present a facile, economical microwave pyrolysis approach to synthesize fluorescent carbon nanoparticles with electrochemiluminescence properties.
Resumo:
Sphere NH4Y1.9Eu0.1F7 nanoparticles were successfully synthesized by a hydrothermal method at 180 degrees C for 10 h. SEM and TEM images show the particles are spheres and have lots of hollows in them. The mean particle size is about 60 nm. The shape and size of the particles can be controlled by changing temperature and time of reactants. The luminescent property of the sample indicates that strong emission peaks of the Eu3+ ions are located at about 589 and 612 mm.
Resumo:
In this paper, we have described a chiral binaphthyl-based fluorescent organogel. Very interestingly, similar to sonocrystallisation of organics, ultrasound can promote the gelation while it cannot occur spontaneously at relatively high temperature or low concentration. The fluorescence enhancement of the gel obtained via ultrasound irradiation is observed. In solution there exist rapid dynamic equilibria between (S)-1 oligomers. The association interactions both between gelator molecules and between solvent and gelator molecules could together effect the helical growth of distorted (S)-1 nanocrystals.
Resumo:
We have demonstrated the design of a new type fluorescent assay based on the inner filter effect (IFE) of metal nanoparticles (NPs), which is conceptually different from the previously reported metal NPs-based fluorescent assays. With a high extinction coefficient and tunable plasmon absorption feature, metal NPs are expected to be capable of functioning as a powerful absorber to tune the emission of the fluorophore in the IFE-based fluorescent assays. In this work, we presented two proof-of-concept examples based on the IFE of Au NPs by choosing MDMO-PPV as a model fluorophore, whose fluorescence could be tuned by the absorbance of Au NPs with a much higher sensitivity than the corresponding absorbance approach.
Resumo:
We report a simple fluorescent method for sensitive cyanide detection based on the dissolution of Rhodamine B-adsorbed gold nanoparticles by cyanide.
Resumo:
In this work,we report the application of novel, water-soluble fluorescent Ag clusters in fluorescent sensors for detecting cysteine, an important biological analyte. The fluorescence of poly(methacrylic acid) (PMAA)templated Ag clusters was found to be quenched effectively by cysteine, but not when the other alpha-amino acids were present. By virtue of the specific response, a new, simple, and sensitive fluorescent method for detecting cysteine has been developed based on Ag clusters. The present assay allows for the selective determination of cysteine in the range of 2.5 x 10(-8) to 6.0 x 10(-6) M with a detection limit of 20 nM at a signal-to-noise ratio of 3. Based on the absorption and fluorescence studies, we suggested that cysteine quenched the emission by the thiol-adsorption-accelerated oxidation of the emissive Ag clusters. The present study shows a promising step toward the application of silver clusters, a new class of attractive fluorescence probes.
Resumo:
In this work, a new fluorescent method for sensitive detection of biological thiols in human plasma was developed using a near-infrared (NIR) fluorescent dye, FR 730. The sensing approach was based on the strong affinity of thiols to gold and highly efficient fluorescent quenching ability of gold nanoparticles (Au NPs). In the presence of thiols, the NIR fluorescence would enhance dramatically due to desorption of FR 730 from the surfaces of Au NPs, which allowed the analysis of thiol-containing amino acids in a very simple approach. The size of Au NPs was found to affect the fluorescent assay and the best response for cysteine detection was achieved when using Au NPs with the diameter of 24 nm, where a linear range of 2.5 x 10(-8) M to 4.0 x 10(-6) M and a detection limit of as low as 10 nM was obtained. This method also demonstrated a high selectivity to thiol-containing amino acids due to the strong affinity of thiols to gold.
Resumo:
A new fluorescent sensor for the sensitive and selective detection of cyanide (CN-) in aqueous media was developed herein. The sensing approach is based on CN--modulated quenching behavior of Cu2+ toward the photoluminescence (PL) of CdTe quantum dots (QDs). In the presence of CN-, the PL of QDs that have been quenched by Cu2+ was found to be efficiently recovered, which then allows the detection of CN- in a very simple approach. Experimental results showed that the pH of the buffer solution, concentration of copper ions, and size of CdTe QDs all influenced the response of the sensor to CN-. Under the optimal conditions, a good linear relationship between the PL intensity and the concentration of CN- can be obtained in the range of 3.0 x 10(-7) to 1.2 x 10(-5) M, with a detection limit as low as 1.5 x 10(-7) M. In addition, the present fluorescent sensor possesses remarkable selectivity for cyanide over other anions, and negligible influences were observed on the cyanide detection by the coexistence of other anions or biological species (such as albumin and typical blood constituents).
Resumo:
A simple, sensitive fluorescent method for detecting cyanide has been developed based on the inner filter effect (IFE) of silver nanoparticles (Ag NPs). With a high extinction coefficient and tunable plasmon absorption feature, Ag NPs are expected to be a powerful absorber to tune the emission of the fluorophore in the IFE-based fluorescent assays. In the present work, we developed a turn-on fluorescent assay for cyanide based on the strong absorption of Ag NPs to both excitation and emission light of an isolated fluorescence indicator. In the presence of cyanide, the absorber Ag NPs will dissolve gradually, which then leads to recovery of the IFE-decreased emission of the fluorophore. The concentration of Ag NPs in the detection system was found to affect the fluorescence response toward cyanide greatly. Under the optimum conditions, the present IFE-based approach can detect cyanide ranging from 5.0 x 10 (7) to 6.0 x 10 (4) M with a detection limit of 2.5 x 10 (7) M, which is much lower than the corresponding absorbance-based approach and compares favorably with other reported fluorescent methods.
Resumo:
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2-NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively. The biofunctionalization of the NaYF4:Yb3+, Er3+ nanoparticles has less effect on their luminescence properties, i.e., they still show the up-conversion emission (from Er3+, with S-4(3/2) -> I-4(15/2) at similar to 540 nm and F-4(9/2) -> I-4(15/2) at similar to 653 nm), indicative of the great potential for these NaYF4:Yb3+, Er3+ nanoparticles to be used as fluorescence probes for biological system.