955 resultados para Field theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Representations of the superalgebra osp(2/2)(k)((1)) and current superalgebra. osp(2/2)k in the standard basis are investigated. All finite-dimensional typical and atypical representations of osp(2/2) are constructed by the vector coherent state method. Primary fields of the non-unitary conformal field theory associated with osp(2/2)(k)((1)) in the standard basis are obtained for arbitrary level k. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-semisimple gl(2)k current superalgebra in the standard basis and the corresponding non-unitary conformal field theory are investigated. Infinite families of primary fields corresponding to all finite-dimensional irreducible typical and atypical representations of gl(212) and three (two even and one odd) screening currents of the first kind are constructed explicitly in terms of ten free fields. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a mean field theory of code-division multiple access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 11S31 12E15 12F10 12J20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis considers non-perturbative methods in quantum field theory with applications to gravity and cosmology. In particular, there are chapters on black hole holography, inflationary model building, and the conformal bootstrap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

%'e compute the divergent part of the three-point vertex function of the non-Abelian Yang-Mills gauge field theory within the stochastic quantization approach to the one-loop order. This calculation allows us to find four renormalization constants which, together with the four previously obtained, verify, to the calculated order, some Ward identities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Part I (Manjunath et al., 1994, Chem. Engng Sci. 49, 1451-1463) of this paper showed that the random particle numbers and size distributions in precipitation processes in very small drops obtained by stochastic simulation techniques deviate substantially from the predictions of conventional population balance. The foregoing problem is considered in this paper in terms of a mean field approximation obtained by applying a first-order closure to an unclosed set of mean field equations presented in Part I. The mean field approximation consists of two mutually coupled partial differential equations featuring (i) the probability distribution for residual supersaturation and (ii) the mean number density of particles for each size and supersaturation from which all average properties and fluctuations can be calculated. The mean field equations have been solved by finite difference methods for (i) crystallization and (ii) precipitation of a metal hydroxide both occurring in a single drop of specified initial supersaturation. The results for the average number of particles, average residual supersaturation, the average size distribution, and fluctuations about the average values have been compared with those obtained by stochastic simulation techniques and by population balance. This comparison shows that the mean field predictions are substantially superior to those of population balance as judged by the close proximity of results from the former to those from stochastic simulations. The agreement is excellent for broad initial supersaturations at short times but deteriorates progressively at larger times. For steep initial supersaturation distributions, predictions of the mean field theory are not satisfactory thus calling for higher-order approximations. The merit of the mean field approximation over stochastic simulation lies in its potential to reduce expensive computation times involved in simulation. More effective computational techniques could not only enhance this advantage of the mean field approximation but also make it possible to use higher-order approximations eliminating the constraints under which the stochastic dynamics of the process can be predicted accurately.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This PhD Thesis is about certain infinite-dimensional Grassmannian manifolds that arise naturally in geometry, representation theory and mathematical physics. From the physics point of view one encounters these infinite-dimensional manifolds when trying to understand the second quantization of fermions. The many particle Hilbert space of the second quantized fermions is called the fermionic Fock space. A typical element of the fermionic Fock space can be thought to be a linear combination of the configurations m particles and n anti-particles . Geometrically the fermionic Fock space can be constructed as holomorphic sections of a certain (dual)determinant line bundle lying over the so called restricted Grassmannian manifold, which is a typical example of an infinite-dimensional Grassmannian manifold one encounters in QFT. The construction should be compared with its well-known finite-dimensional analogue, where one realizes an exterior power of a finite-dimensional vector space as the space of holomorphic sections of a determinant line bundle lying over a finite-dimensional Grassmannian manifold. The connection with infinite-dimensional representation theory stems from the fact that the restricted Grassmannian manifold is an infinite-dimensional homogeneous (Kähler) manifold, i.e. it is of the form G/H where G is a certain infinite-dimensional Lie group and H its subgroup. A central extension of G acts on the total space of the dual determinant line bundle and also on the space its holomorphic sections; thus G admits a (projective) representation on the fermionic Fock space. This construction also induces the so called basic representation for loop groups (of compact groups), which in turn are vitally important in string theory / conformal field theory. The Thesis consists of three chapters: the first chapter is an introduction to the backround material and the other two chapters are individually written research articles. The first article deals in a new way with the well-known question in Yang-Mills theory, when can one lift the action of the gauge transformation group on the space of connection one forms to the total space of the Fock bundle in a compatible way with the second quantized Dirac operator. In general there is an obstruction to this (called the Mickelsson-Faddeev anomaly) and various geometric interpretations for this anomaly, using such things as group extensions and bundle gerbes, have been given earlier. In this work we give a new geometric interpretation for the Faddeev-Mickelsson anomaly in terms of differentiable gerbes (certain sheaves of categories) and central extensions of Lie groupoids. The second research article deals with the question how to define a Dirac-like operator on the restricted Grassmannian manifold, which is an infinite-dimensional space and hence not in the landscape of standard Dirac operator theory. The construction relies heavily on infinite-dimensional representation theory and one of the most technically demanding challenges is to be able to introduce proper normal orderings for certain infinite sums of operators in such a way that all divergences will disappear and the infinite sum will make sense as a well-defined operator acting on a suitable Hilbert space of spinors. This research article was motivated by a more extensive ongoing project to construct twisted K-theory classes in Yang-Mills theory via a Dirac-like operator on the restricted Grassmannian manifold.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We offer a procedure for evaluating the forces exerted by solitons of weak-coupling field theories on one another. We illustrate the procedure for the kink and the antikink of the two-dimensional φ4 theory. To do this, we construct analytically a static solution of the theory which can be interpreted as a kink and an antikink held a distance R apart. This leads to a definition of the potential energy U(R) for the pair, which is seen to have all the expected features. A corresponding evaluation is also done for U(R) between a soliton and an antisoliton of the sine-Gordon theory. When this U(R) is inserted into a nonrelativistic two-body problem for the pair, it yields a set of bound states and phase shifts. These are found to agree with exact results known for the sine-Gordon field theory in those regions where U(R) is expected to be significant, i.e., when R is large compared to the soliton size. We take this agreement as support that our procedure for defining U(R) yields the correct description of the dynamics of well-separated soliton pairs. An important feature of U(R) is that it seems to give strong intersoliton forces when the coupling constant is small, as distinct from the forces between the ordinary quanta of the theory. We suggest that this is a general feature of a class of theories, and emphasize the possible relevance of this feature to real strongly interacting hadrons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Arguments arising from quantum mechanics and gravitation theory as well as from string theory, indicate that the description of space-time as a continuous manifold is not adequate at very short distances. An important candidate for the description of space-time at such scales is provided by noncommutative space-time where the coordinates are promoted to noncommuting operators. Thus, the study of quantum field theory in noncommutative space-time provides an interesting interface where ordinary field theoretic tools can be used to study the properties of quantum spacetime. The three original publications in this thesis encompass various aspects in the still developing area of noncommutative quantum field theory, ranging from fundamental concepts to model building. One of the key features of noncommutative space-time is the apparent loss of Lorentz invariance that has been addressed in different ways in the literature. One recently developed approach is to eliminate the Lorentz violating effects by integrating over the parameter of noncommutativity. Fundamental properties of such theories are investigated in this thesis. Another issue addressed is model building, which is difficult in the noncommutative setting due to severe restrictions on the possible gauge symmetries imposed by the noncommutativity of the space-time. Possible ways to relieve these restrictions are investigated and applied and a noncommutative version of the Minimal Supersymmetric Standard Model is presented. While putting the results obtained in the three original publications into their proper context, the introductory part of this thesis aims to provide an overview of the present situation in the field.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the last decades mean-field models, in which large-scale magnetic fields and differential rotation arise due to the interaction of rotation and small-scale turbulence, have been enormously successful in reproducing many of the observed features of the Sun. In the meantime, new observational techniques, most prominently helioseismology, have yielded invaluable information about the interior of the Sun. This new information, however, imposes strict conditions on mean-field models. Moreover, most of the present mean-field models depend on knowledge of the small-scale turbulent effects that give rise to the large-scale phenomena. In many mean-field models these effects are prescribed in ad hoc fashion due to the lack of this knowledge. With large enough computers it would be possible to solve the MHD equations numerically under stellar conditions. However, the problem is too large by several orders of magnitude for the present day and any foreseeable computers. In our view, a combination of mean-field modelling and local 3D calculations is a more fruitful approach. The large-scale structures are well described by global mean-field models, provided that the small-scale turbulent effects are adequately parameterized. The latter can be achieved by performing local calculations which allow a much higher spatial resolution than what can be achieved in direct global calculations. In the present dissertation three aspects of mean-field theories and models of stars are studied. Firstly, the basic assumptions of different mean-field theories are tested with calculations of isotropic turbulence and hydrodynamic, as well as magnetohydrodynamic, convection. Secondly, even if the mean-field theory is unable to give the required transport coefficients from first principles, it is in some cases possible to compute these coefficients from 3D numerical models in a parameter range that can be considered to describe the main physical effects in an adequately realistic manner. In the present study, the Reynolds stresses and turbulent heat transport, responsible for the generation of differential rotation, were determined along the mixing length relations describing convection in stellar structure models. Furthermore, the alpha-effect and magnetic pumping due to turbulent convection in the rapid rotation regime were studied. The third area of the present study is to apply the local results in mean-field models, which task we start to undertake by applying the results concerning the alpha-effect and turbulent pumping in mean-field models describing the solar dynamo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conditions for quantum topological invariance of classically topological field theories in the path integral formulation are discussed. Both the three-dimensional Chern-Simons system and a Witten-type topological field theory are shown to satisfy these conditions.