807 resultados para Falciparum
Resumo:
The genus Aotus spp. (owl monkey) is one of the WHO recommended experimental models for Plasmodium falciparum blood stage infection, especially relevant for vaccination studies with asexual blood stage antigens of this parasite. For several immunization trials with purified recombinant merozoite/schizont antigens, the susceptible Aouts kenotypes II, III, IV and VI were immunized with Escherichia coli derived fusion proteins containg partial sequences of the proteins MSAI (merozoite surface antigen I), SERP (serine-strech protein) and HRPII (histidine alanine rich protein II) as well as with a group of recombinant antigens obtained by an antiserum raised against a protective 41 kD protein band. The subcutaneous application (3x) of the antigen preparations was carried out in intact animals followed by splenectomy prior to challange, in order to increase the susceptibility of the experimental hosts to the parasite. A partial sequence of HRPII, the combination of three different fusion proteins of the 41 kD group and mixture of two sequences of SERP in the presence of the modified Al(OH)3 adjuvant conferred significant protection against a challange infection with P. falciparum blood stages (2-5 x 10 (elevado a sexta potência) i. RBC). Monkey immunized with the MS2-fusion protein carrying the N-terminal part of the 195 kD precursor of the major merozoite surface antigens induced only marginal protection showing some correlation between antibody titer and degree of parasitaemia. Based on the protective capacity of these recombinant antigens we have expressed two hybrid proteins (MS2/SERP/HRPII and SERP/MSAI/HRPII) in E. coli containing selected partial sequences of SERP, HRPII and MSAI. Antibodies raised against both hybrid proteins in rabbits and Aotus monkeys recognize the corresponding schizont polypeptides. In two independent immunization trials using 13 animals (age 7 months to 3 years) we could show that immunization of Aotus monkeys with either of the two hybrid proteins administered in an oil-based well tolerated formulation protected the animals frm a severe experimental P. falciparum (strain Palo Alto) infection.
Resumo:
The protective efficacy of several recombinat and a synthetic Plasmodium falciparum protein was assessed in Aoutus monkeys. The rp41 aldolase, the 190L fragment of the MSA-1 protein and fusion 190L-CS. T3 protein containg the CS. T3 helper "universal epitope were emulsified in Freund's adjuvants and injected 3 times in groups of 4-5 monkeys each one. The synthetic polymer Spf (66)30 also emulsified in Freund's adjuvants was injected 6 times. Control groups for both experiments were immunized with saline solution in the same adjuvant following the same schedules. Serology for malaria specific antibodies showed seroconversion in monkeys immunized with the recombinant proteins but not in those immunized with the polymer nor in the controls. Challenge was performed with the 10 (elevado a quinta potência) parasites from the P. falciparum FVO isolate. Neither rp41 nor SPf (66)30 induced protection, whereas 190L induced significant delay of parasitemia. The fusion of the CS. T3 epitope to 190L significantly increased is protective capacity.
Resumo:
Six Plasmodium falciparum protein fractions, isolated under reducing conditions, were used to immunize mice, rabbits and the squirrel monkey Saimiri sciureus. Five or seven subcutaneous injections of each antigenic preparation, in conjunction with Freund's complete or incomplete adjuvants, were administered. This led to the development of specific antibodies detected by IFAT, ELISA or immunobloting which inhibited merozoite reinvasion in in vitro P. falciparum cultures. This activity seems to be associated with rhoptry proteins contained in fractions Pf F2 and Pf F4.
Resumo:
Impaired renal function was observed in sixteen Aotus nancymai 25 and 3 months following infection with the Uganda Palo Alto strain of Plasmodium falciparum. Decrease were noted in the clearance of endogenous creatinine, creatinine excretion, and urine volume while increases were observed in serum urea nitrogen, urine protein, urine potassium, fractional excretion of phosphorus and potassium, and activities of urinary enzymes. The results were suggestive of glomerulonephropathy and chronic renal disease.
Resumo:
Mechanisms of immune protection against the asexual blood stage infection by Plasmodium falciparum are reviewed. Recent studies of two independent lines of research developed at the Institute Pasteur, in humans and primate infections clearly indicate an obligatory interaction of antibodies and effector cells to express the anti-parasitic effect.
Resumo:
Antibodies of IgG and IgM isotopes reacting with Plasmodium falciparum and P. vivax thick-smear antigens were searched for by the indirect fluorescent antibody test (IFAT) in a random sample of 230 blood donors at the transfusion centre of Porto Velho (HEMERON), Rondônia State, western Brazilian Amazon. A high prevalence of IgG seropositivity (32% against P. falciparum, 24% against P. vivax and 37% against either P. falciparum or P. vivax antigens) was detected among them, despite the fact that candidates reporting recent (<12 months) malaria attacks were not elegible. Only a small proportion of them had also detectable IgM antibodies to these antigens. These data suggest an intense, relatively recent exposure to malaria in such an urban population sample. However, parasitaemia (as detected by microscopical examination of Giemsa-stained thick smears) was patent in only one prospective donor. The antibody profile of blood donors was compared with that of healthy subjects of all age groups, living in a close endemic area (Candeias village, 21 km east of Porto Velho). The villagers were classified into two groups according to their history of a recent (<12 months) or a remote (>12 months) past malaria attack due to either P. falciparum or P. vivax. Extensive overlapping was observed when the distribution of antibody titres of healthy subjects from Candeias village with a recent and remote malaria history was compared. In conclusion, subjects with a recent or a remote malaria history could not be distinguished by sorological criteria alone.
Resumo:
Liver-stage antigen 3 (LSA-3) is a new vaccine candidate that can induce protection against Plasmodium falciparum sporozoite challenge. Using a series of long synthetic peptides (LSP) encompassing most of the 210-kDa LSA-3 protein, a study of the antigenicity of this protein was carried out in 203 inhabitants from the villages of Dielmo (n = 143) and Ndiop (n = 60) in Senegal (the level of malaria transmission differs in these two villages). Lymphocyte responses to each individual LSA-3 peptide were recorded, some at high prevalences (up to 43%). Antibodies were also detected to each of the 20 peptides, many at high prevalence (up to 84% of responders), and were directed to both nonrepeat and repeat regions. Immune responses to LSA-3 were detectable even in individuals of less than 5 years of age and increased with age and hence exposure to malaria, although they were not directly related to the level of malaria transmission. Thus, several valuable T- and B-cell epitopes were characterized all along the LSA-3 protein, supporting the antigenicity of this P. falciparum vaccine candidate. Finally, antibodies specific for peptide LSP10 located in a nonrepeat region of LSA-3 were found significantly associated with a lower risk of malaria attack over 1 year of daily clinical follow-up in children between the ages of 7 and 15 years, but not in older individuals.
Resumo:
The immunogenicity of a novel synthetic peptide consisting of an average of 40 (Asn-Ala-Asn-Pro) repeats of the circumsporozoite protein of Plasmodium falciparum, (NANP)40, was studied in mice without using any carrier proteins. First, high titers of anti-(NANP)40 antibodies could be obtained after immunization of C57BL/6 mice. These antibodies also reacted with an extract of mosquitoes infected with P. falciparum sporozoites. C57BL/6 nu/nu mice did not produce antibodies against (NANP)40. Secondly, when 14 strains of mice with nine different H-2 haplotypes were immunized with (NANP)40 without carrier, only H-2b mice were found to produce anti-(NANP)40 antibodies, whereas all non-H-2b mice were consistently unresponsive. This response was demonstrated to be I-A-linked by using recombinant and mutant mice. I-Ab [B10.A(5R)] mice produced anti-(NANP)40 antibodies as well as H-2b inbred mice. B6CH-2bm12 I-Ab-mutant mice showed only a very low response. Third, the antibody response against (NANP)40 could be induced in nonresponder mice by immunization with the peptide coupled to a carrier protein. In view of the existence of such an exceptional H-2b restriction in the response to sporozoite synthetic peptides in mice, the triggering of peptide-specific T cell responses in humans receiving sporozoite malaria vaccines might be difficult to achieve.
Resumo:
Sera from 29 individuals residing in a malaria-endemic region of Colombia were evaluated by an inhibition assay for their capacity to retard the growth of Plasmodium falciparum in vitro. The inhibitory activity was found to be independent of antibody activity. Furthermore, the degree of inhibition of parasite development was variable, depending on the parasite isolate used for the assay and the season of malaria transmission. We selected sera with high inhibitory activity and carried out partial analytical characterization by anion exchange fast protein liquid chromatography (FPLC) to identify the chemical nature of the inhibitory factor(s). The results suggested that the in vitro inhibitory activity might result from the additive effect of different molecules. It appears that these molecules could be non-specifically induced by stimulation of the immune system, they seem to play a role in the immunity to malaria.
Resumo:
In ongoing studies on experimental transmission of Plasmodium falciparum in the city of Yaounde gametocyte carriers are daily being identified among dispensary patients with malaria-like complaints. This species comprises 93 of all parasitemias and because of the selection criteria most patients have it as a recent infection. 17 of all P. falciparum-positives carry detectable gametocytes with little difference between youngsters and adults. Blood of adult carriers is taken and infection of Anopheles gambiae mosquitoes is attempted by membrane feeding; the establishment of infection is judged by the presence of oocysts.
Resumo:
Previous studies of subtelomeric regions in Plasmodium berghei led to the identification of subtelomeric repeats (2.3kb long) present in a variable number at many chromosomal ends. Both loss and increase in 2.3kb-repeat copy number are involved in chromosome-size polymorphisms. Subtelomeric losses leading to chromosome-size polymorphisms have been described by several authors in P.falciparum where the structure of subtelomeric regions is not known in detail. We therefore undertook their characterisation, by means of chromosome walking and jumping techniques, starting from the telomere-flanking sequence present in pPftel.1, the P.falciparum telomeric clone described by Vernick and McCutchan (1988). The results indicate that at least 20 (out of 28) chromosomal ends in P.falciparum 3D7 chromosomes share a subtelomeric region, about 40kb long, covering (but not limited to) the Rep20 region. Non repetitive, AT-rich portions flanking the Rep20 region on both sides are also conserved at most chromosomal ends.
Resumo:
Numerous proteinase activities have been shown to be essential for the survival of Plasmodium falciparum. One approach to antimalarial chemotherapy, would be to block specifically one or several of these activities, by using compounds structurally analogous to the substrates of these proteinases. Such a strategy requires a detailed knowledge of the active site of the proteinase, in order to identify the best substrate for the proteinase. Aiming at developing such a strategy, two proteinases previously identified in our laboratory, were chosen for further characterization of their molecular structure and properties: the merozoite proteinase for erythrocytic invasion (MPEI), involved in the erythrocyte invasion by the merozoites, and the Pf37 proteinase, which hydrolyses human spectrin in vitro.
Resumo:
The most unique characteristic of a parasite when it is in its normal host is the ability to make itself tolerated, which clearly indicates that it has sophisticated means to ensure the neutrality of its host. This is true also in the case of Plasmodium falciparum, since after numerous malaria attacks an equilibrium is reached with a chronic stage of infection, characterized by a relatively low parasitemia, and low or no disease (Sergent & Parrot 1935). We shall briefly review the main characteristics of this state of "premunition", and present data suggesting that the underlying mechanisms of defense rely on the cooperation between cell and antibodies, leading to an antibody dependent cellular inhibition of the intra-erythrocytic growth of the parasite.
Resumo:
A preliminary baseline epidemiological malaria survey was conducted in the village of Punta Soldado, Colombia. Parasite prevalence and density as well as serological data were obtained from 151 asymptomatic children and adults. Fifty individuals were infected with Plasmodium falciparum. The mean parasite density was 184 parasites/mm3. Greater than 90 of the sample population were P. falciparum antibody positive as detected by the indirect immunofluorescent antibody test (IFAT). The enzyme-linked immunosorbent assay (ELISA) was used to detect antibodies against the major merozoite surface protein (MSP-1) of P. falciparum. In this population, anti-MSP-1 antibody concentration is acquired in an age dependent manner with equal immunogenicity to both the N- and C-terminal regions of the molecule. Infection at the time of sampling was associated with a higher anti-MSP-1 antibody concentration than that found in non-infected individuals. Further studies are planned to assess the role of immune and non-immune factors in limiting the number of cases of severe malaria seen in this population.