965 resultados para Failure mechanisms
Resumo:
The.use of high-chromium cast irons for abrasive wear resistance is restricted due to their poor fracture toughness properties. An.attempt was made to improve the fracture characteristics by altering the distribution, size and.shape of the eutectic carbide phase without sacrificing their excellent wear resistance. This was achieved by additions of molybdenum or tungsten followed by high temperature heat treatments. The absence of these alloying elements or replacement of them with vanadium or manganese did not show any significant effect and the continuous eutectic carbide morphology remained the same after application of high temperature heat treatments. The fracture characteristics of the alloys with these metallurgical variables were evaluated for both sharp-cracks and blunt notches. The results were used in conjunction with metallographic and fractographic observations to establish possible failure mechanisms. The fracture mechanism of the austenitic alloys was found to be controlled not only by the volume percent but was also greatly influenced by the size and distribution of the eutectic carbides. On the other hand, the fracture mechanism of martensitic alloys was independent of the eutectic carbide morphology. The uniformity of the secondary carbide precipitation during hardening heat treatments was shown to be a reason for consistant fracture toughness results being obtained with this series of alloys although their eutectic carbide morphologies were different. The collected data were applied to a model which incorporated the microstructural parameters and correlated them with the experimentally obtained valid stress intensity factors. The stress intensity coefficients of different short-bar fracture toughness test specimens were evaluated from analytical and experimental compliance studies. The.validity and applicability of this non-standard testing technique for determination of the fracture toughness of high-chromium cast irons were investigated. The results obtained correlated well with the valid results obtained from standard fracture toughness tests.
Resumo:
A study of the influence of SiC-particulate reinforcement on ageing and subsequent fatigue crack growth resistance in a powder metallurgy 8090 aluminium alloy-SiC composite has been made. Macroscopic hardness measurements revealed that ageing at 170°C in the composite is accelerated with respect to the unreinforced alloy, though TEM studies indicate that this is not due to the enhanced precipitation of S′. Fatigue crack growth rates in the naturally aged condition of the composite and unreinforced matrix are similar at low to medium values of ΔK, but diverge above ≈ 8 MPa√m owing to the lower fracture toughness of the composite. As a result of the presence of the reinforcement, planar slip in the composite is suppressed and facetted crack growth is not observed. Ageing at or above 170°C has a deleterious effect on fatigue crack growth. Increased ageing time decreases the roughness of the fracture path at higher growth rates. These effect are though to be due to microstructural changes occurring at or near to the SiC/matrix interfaces, providing sites for static mode failure mechanisms to operate. This suggestion is supported by the observation that as ΔK increases, crack growth rates become Kmax dependent, implying the crack growth rate is strongly influenced by static modes.
Resumo:
The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.
Resumo:
Insulated-gate bipolar transistor (IGBT) power modules find widespread use in numerous power conversion applications where their reliability is of significant concern. Standard IGBT modules are fabricated for general-purpose applications while little has been designed for bespoke applications. However, conventional design of IGBTs can be improved by the multiobjective optimization technique. This paper proposes a novel design method to consider die-attachment solder failures induced by short power cycling and baseplate solder fatigue induced by the thermal cycling which are among major failure mechanisms of IGBTs. Thermal resistance is calculated analytically and the plastic work design is obtained with a high-fidelity finite-element model, which has been validated experimentally. The objective of minimizing the plastic work and constrain functions is formulated by the surrogate model. The nondominated sorting genetic algorithm-II is used to search for the Pareto-optimal solutions and the best design. The result of this combination generates an effective approach to optimize the physical structure of power electronic modules, taking account of historical environmental and operational conditions in the field.
Resumo:
Due to relative ground movement, buried pipelines experience geotechnical loads. The imposed geotechnical loads may initiate pipeline deformations that affect system serviceability and integrity. Engineering guidelines (e.g., ALA, 2005; Honegger and Nyman, 2001) provide the technical framework to develop idealized structural models to analyze pipe‒soil interaction events and assess pipe mechanical response. The soil behavior is modeled using discrete springs that represent the geotechnical loads per unit pipe length developed during the interaction event. Soil forces are defined along three orthogonal directions (i.e., axial, lateral and vertical) to analyze the response of pipelines. Nonlinear load-displacement relationships of soil defined by a spring, is independent of neighboring spring elements. However, recent experimental and numerical studies demonstrate significant coupling effects during oblique (i.e., not along one of the orthogonal axes) pipe‒soil interaction events. In the present study, physical modeling using a geotechnical centrifuge was conducted to improve the current understanding of soil load coupling effects of buried pipes in loose and dense sand. A section of pipeline, at shallow burial depth, was translated through the soil at different oblique angles in the axial-lateral plane. The force exerted by the soil on pipe is critically examined to assess the significance of load coupling effects and establish a yield envelope. The displacements required to soil yield force are also examined to assess potential coupling in mobilization distance. A set of laboratory tests were conducted on the sand used for centrifuge modeling to find the stress-strain behavior of sand, which was used to examine the possible mechanisms of centrifuge model test. The yield envelope, deformation patterns, and interpreted failure mechanisms obtained from centrifuge modeling are compared with other physical modeling and numerical simulations available in the literature.
Resumo:
Submarine slope stability has become an important concern and a subject of research with increasing demand for offshore developments and technological advancement for harsh and challenging environments. The consequences of submarine slope failure adjacent to oil and gas facilities would have a large financial, safety and regulatory impact. This current research work investigates potential failure of submarine gassy slopes triggered by tidal variations. Due to tidal variations, failure of an unsaturated slope may occur under specific combinations of increasing degree of saturation and soil permeability, and decreasing tidal period. Novel physical model tests in a geotechnical centrifuge were undertaken to examine submarine slope failure mechanisms containing gassy sediments. The model preparation techniques, measurement systems and results are presented. The response observed in the model test is discussed and further developments proposed. The buried PPT’s response of the submarine slope are comparable in terms of attenuation and phase lag with Nagaswaran (1983) and with field measurements of Atigh and Byrne (2004) in terms of phase lag.
Resumo:
This paper presents the results of a combined study, using cosmogenic 36Cl exposure dating and terrestrial digital photogrammetry, of the Palliser Rockslide located in the southeastern Canadian Rocky Mountains. This site is particularly well-suited to demonstrate how this multi-disciplinary approach can be used to differentiate distinct rocksliding events, estimate their volume, and establish their chronology and recurrence interval. Observations suggest that rocksliding has been ongoing since the late Pleistocene deglaciation. Two major rockslide events have been dated at 10.0 ± 1.2 kyr and 7.7 ± 0.8 kyr before present, with failure volumes of 40 Mm3 and 8 Mm3, respectively. The results have important implications concerning our understanding of the temporal distribution of paraglacial rockslides and rock avalanches; they provide a better understanding of the volumes and failure mechanisms of recurrent failure events; and they represent the first absolute ages of a prehistoric high magnitude event in the Canadian Rocky Mountains.
Resumo:
Experimental tests have been completed for high-strength 8.8 bolts for studying their mechanical performance subjected to tensile loading. As observed from these tests, failure of structural bolts has been identified as in one of two ways: threads stripping and necking of the threaded portion of the bolt shank, which is possibly due to the degree of fit between internal and external threads. Following the experimental work, a numerical approach has been developed for demonstration of the tensile performance with proper consideration of tolerance class between bolts and nuts. The degree of fit between internal and external threads has been identified as a critical factor affecting failure mechanisms of high-strength structural bolts in tension, which is caused by the machining process. In addition, different constitutive material laws have been taken into account in the numerical simulation, demonstrating the entire failure mechanism for structural bolts with different tolerance classes in their threads. It is also observed that the bolt capacities are closely associated with their failure mechanisms.
Resumo:
[EN] More than 20 mega-landslides have been described in the Canary Islands affecting the flanks of the volcanic edifices. Güímar and La Orotava landslides, in Tenerife, are two exceptional cases due to their huge dimensions and outstanding geomorphological features. The estimated volume of these landslides exceed tens of cubic km. Tsunami deposits have been also identified in some of the islands of the archipelago probably associated to the large landslides of the islands flanks. An investigation has been carried out to explain the causes of these large instability processes and their failure mechanisms.
Resumo:
This dissertation demonstrates an explanation of damage and reliability of critical components and structures within the second law of thermodynamics. The approach relies on the fundamentals of irreversible thermodynamics, specifically the concept of entropy generation due to materials degradation as an index of damage. All failure mechanisms that cause degradation, damage accumulation and ultimate failure share a common feature, namely energy dissipation. Energy dissipation, as a fundamental measure for irreversibility in a thermodynamic treatment of non-equilibrium processes, leads to and can be expressed in terms of entropy generation. The dissertation proposes a theory of damage by relating entropy generation to energy dissipation via generalized thermodynamic forces and thermodynamic fluxes that formally describes the resulting damage. Following the proposed theory of entropic damage, an approach to reliability and integrity characterization based on thermodynamic entropy is discussed. It is shown that the variability in the amount of the thermodynamic-based damage and uncertainties about the parameters of a distribution model describing the variability, leads to a more consistent and broader definition of the well know time-to-failure distribution in reliability engineering. As such it has been shown that the reliability function can be derived from the thermodynamic laws rather than estimated from the observed failure histories. Furthermore, using the superior advantages of the use of entropy generation and accumulation as a damage index in comparison to common observable markers of damage such as crack size, a method is proposed to explain the prognostics and health management (PHM) in terms of the entropic damage. The proposed entropic-based damage theory to reliability and integrity is then demonstrated through experimental validation. Using this theorem, the corrosion-fatigue entropy generation function is derived, evaluated and employed for structural integrity, reliability assessment and remaining useful life (RUL) prediction of Aluminum 7075-T651 specimens tested.
Resumo:
Polymer aluminum electrolytic capacitors were introduced to provide an alternative to liquid electrolytic capacitors. Polymer electrolytic capacitor electric parameters of capacitance and ESR are less temperature dependent than those of liquid aluminum electrolytic capacitors. Furthermore, the electrical conductivity of the polymer used in these capacitors (poly-3,4ethylenedioxithiophene) is orders of magnitude higher than the electrolytes used in liquid aluminum electrolytic capacitors, resulting in capacitors with much lower equivalent series resistance which are suitable for use in high ripple-current applications. The presence of the moisture-sensitive polymer PEDOT introduces concerns on the reliability of polymer aluminum capacitors in high humidity conditions. Highly accelerated stress testing (or HAST) (110ºC, 85% relative humidity) of polymer aluminum capacitors in which the parts were subjected to unbiased HAST conditions for 700 hours was done to understand the design factors that contribute to the susceptibility to degradation of a polymer aluminum electrolytic capacitor exposed to HAST conditions. A large scale study involving capacitors of different electrical ratings (2.5V – 16V, 100µF – 470 µF), mounting types (surface-mount and through-hole) and manufacturers (6 different manufacturers) was done to determine a relationship between package geometry and reliability in high temperature-humidity conditions. A Geometry-Based HAST test in which the part selection limited variations between capacitor samples to geometric differences only was done to analyze the effect of package geometry on humidity-driven degradation more closely. Raman spectroscopy, x-ray imaging, environmental scanning electron microscopy, and destructive analysis of the capacitors after HAST exposure was done to determine the failure mechanisms of polymer aluminum capacitors under high temperature-humidity conditions.
Resumo:
Non-intrusive monitoring of health state of induction machines within industrial process and harsh environments poses a technical challenge. In the field, winding failures are a major fault accounting for over 45% of total machine failures. In the literature, many condition monitoring techniques based on different failure mechanisms and fault indicators have been developed where the machine current signature analysis (MCSA) is a very popular and effective method at this stage. However, it is extremely difficult to distinguish different types of failures and hard to obtain local information if a non-intrusive method is adopted. Typically, some sensors need to be installed inside the machines for collecting key information, which leads to disruption to the machine operation and additional costs. This paper presents a new non-invasive monitoring method based on GMRs to measure stray flux leaked from the machines. It is focused on the influence of potential winding failures on the stray magnetic flux in induction machines. Finite element analysis and experimental tests on a 1.5-kW machine are presented to validate the proposed method. With time-frequency spectrogram analysis, it is proven to be effective to detect several winding faults by referencing stray flux information. The novelty lies in the implement of GMR sensing and analysis of machine faults.
Resumo:
The application of 3D grain-based modelling techniques is investigated in both small and large scale 3DEC models, in order to simulate brittle fracture processes in low-porosity crystalline rock. Mesh dependency in 3D grain-based models (GBMs) is examined through a number of cases to compare Voronoi and tetrahedral grain assemblages. Various methods are used in the generation of tessellations, each with a number of issues and advantages. A number of comparative UCS test simulations capture the distinct failure mechanisms, strength profiles, and progressive damage development using various Voronoi and tetrahedral GBMs. Relative calibration requirements are outlined to generate similar macro-strength and damage profiles for all the models. The results confirmed a number of inherent model behaviors that arise due to mesh dependency. In Voronoi models, inherent tensile failure mechanisms are produced by internal wedging and rotation of Voronoi grains. This results in a combined dependence on frictional and cohesive strength. In tetrahedral models, increased kinematic freedom of grains and an abundance of straight, connected failure pathways causes a preference for shear failure. This results in an inability to develop significant normal stresses causing cohesional strength dependence. In general, Voronoi models require high relative contact tensile strength values, with lower contact stiffness and contact cohesional strength compared to tetrahedral tessellations. Upscaling of 3D GBMs is investigated for both Voronoi and tetrahedral tessellations using a case study from the AECL’s Mine-by-Experiment at the Underground Research Laboratory. An upscaled tetrahedral model was able to reasonably simulate damage development in the roof forming a notch geometry by adjusting the cohesive strength. An upscaled Voronoi model underestimated the damage development in the roof and floor, and overestimated the damage in the side-walls. This was attributed to the discretization resolution limitations.
Resumo:
Résumé : Cette juxtaposition de matériaux solides -blocs, pierres ou briques,...- liés ou non entre eux que nous appelons maçonnerie ne se comporte pas très bien vis-à-vis des forces latérales, surtout si elle n’a pas été réalisée suivant les normes parasismiques ou de façon adéquate. Cette vulnérabilité (glissement, cisaillement, déchirure en flexion, ou tout autre) vient souvent du fait même de ce processus d’empilement, des problèmes d’interaction avec le reste de la structure et aussi à cause des caractéristiques mécaniques peu fiables de certains éléments utilisés. Malgré cette défaillance structurale, la maçonnerie est encore utilisée aujourd’hui grâce à son côté traditionnel, sa facilité de mise en œuvre et son coût d’utilisation peu élevé. Depuis quelques années, la maçonnerie s’est enrichie de documents qui ont été publiés par divers chercheurs dans le but d’une meilleure compréhension des caractéristiques mécaniques des éléments et aussi, et surtout, des mécanismes de rupture des murs de maçonnerie pour une meilleure réponse face aux sollicitations sismiques. Beaucoup de programmes expérimentaux ont alors été effectués et tant d’autres sont encore nécessaires. Et c’est dans ce contexte que cette recherche a été conduite. Elle présentera, entre autres, le comportement sous charges latérales d’un mur en maçonnerie armée entièrement rempli de coulis. Ce projet de recherche fait partie d’un programme plus large visant à une meilleure connaissance du comportement sismique de la maçonnerie pour une amélioration des techniques de construction et de réparation des ouvrages en maçonnerie.
Resumo:
Structural framing systems and mechanisms designed for normal use rarely possess adequate robustness to withstand the effects of large impacts, blasts and extreme earthquakes that have been experienced in recent times. Robustness is the property of systems that enables them to survive unforeseen or unusual circumstances (Knoll & Vogel, 2009). Queensland University of Technology with industry collaboration is engaged in a program of research that commenced 15 years ago to study the impact of such unforeseeable phenomena and investigate methods of improving robustness and safety with protective mechanisms embedded or designed in structural systems. This paper highlights some of the research pertaining to seismic protection of building structures, rollover protective structures and effects of vehicular impact and blast on key elements in structures that could propagate catastrophic and disproportionate collapse.