910 resultados para FT-IR spectrum


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Raman and Fourier transform infrared (FT-IR) spectroscopy have been applied to a systematic investigation of the adsorption and decomposition of dichlorodifluoromethane (CCl2F2, CFC-12), fluorotrichloromethane (CCl3F, CFC-11), chlorodifluoromethane (CHClF2, HCFC-22) and molecular chlorine on oxide surfaces. Additionally, the effects of heating and ultraviolet photolysis of the CFC and HCFCs adsorbed on the oxide surfaces have been investigated. Spectral features for these species indicated a small wavenumber shift (1-6 cm-1) associated with the adsorbed phase. Some evidence, specifically the appearance of the Raman band at 507 cm-1, is presented to show that chlorine decomposition species are associated with these oxide surfaces. It was concluded that the new spectral feature (at ca. 507 cm-1) related with the decomposition of the CFC and HCFC molecules was an important indicator of the extent to which the reaction between the adsorbed CFC and HCFC and oxide surface has taken place. The extent of CFC-surface interaction has been quantified in terms of a maximum (Raman) frequency shift parameter (AM). Wavenumber shifts suggest both cation-adsorbate and non-specific adsorption interactions are occurring in the internal channels of the zeolites. Slow decomposition of the adsorbed CFCs under ultraviolet-visible photolysis (at ? > 300 nm) and/or thermal treatment was observed spectroscopically. Using FT-IR spectroscopy, the formation of gas-phase products (CO, CO2, HCl) both onyn photolysis and heating was evident. Results of these measurements are compared with the observed atmospheric reactivity of these compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, the reaction of semiconductor microrods of phase I copper 7,7,8,8-tetracyanoquinodimethane (CuTCNQ) with KAuBr4 in acetonitrile is reported. It was found that the reaction is redox in nature and proceeds via a galvanic replacement mechanism in which the surface of CuTCNQ is replaced with metallic gold nanoparticles. Given the slight solubility of CuTCNQ in acetonitrile, two competing reactions, namely CuTCNQ dissolution and the redox reaction with KAuBr4, were found to operate in parallel. An increase in the surface coverage of CuTCNQ microrods with gold nanoparticles occurred with an increased KAuBr4 concentration in acetonitrile, which also inhibited CuTCNQ dissolution. The reaction progress with time was monitored using UV−visible, FT-IR, and Raman spectroscopy as well as XRD and EDX analysis, and SEM imaging. The CuTCNQ/Au nanocomposites were investigated for their photocatalytic properties, wherein the destruction of Congo red, an organic dye, by simulated solar light was found dependent on the surface coverage of gold nanoparticles on the CuTCNQ microrods. This method of decorating CuTCNQ may open the possibility of modifying this and other metal-TCNQ charge transfer complexes with a host of other metals which may have significant applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The spontaneous reaction between microrods of an organic semiconductor molecule, copper 7,7,8,8-tetracyanoquinodimethane (CuTCNQ) with [AuBr4]− ions in an aqueous environment is reported. The reaction is found to be redox in nature which proceeds via a complex galvanic replacement mechanism, wherein the surface of the CuTCNQ microrods is replaced with metallic gold nanoparticles. Unlike previous reactions reported in acetonitrile, the galvanic replacement reaction in aqueous solution proceeds via an entirely different reaction mechanism, wherein a cyclical reaction mechanism involving continuous regeneration of CuTCNQ consumed during the galvanic replacement reaction occurs in parallel with the galvanic replacement reaction. This results in the driving force of the galvanic replacement reaction in aqueous medium being largely dependent on the availability of [AuBr4]− ions during the reaction. Therefore, this study highlights the importance of the choice of an appropriate solvent during galvanic replacement reactions, which can significantly impact upon the reaction mechanism. The reaction progress with respect to different gold salt concentration was monitored using Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopy (XPS), as well as XRD and EDX analysis, and SEM imaging. The CuTCNQ/Au nanocomposites were also investigated for their potential photocatalytic properties, wherein the destruction of the organic dye, Congo red, in a simulated solar light environment was found to be largely dependent on the degree of gold nanoparticle surface coverage. The approach reported here opens up new possibilities of decorating metal–organic charge transfer complexes with a host of metals, leading to potentially novel applications in catalysis and sensing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The safe working lifetime of a structure in a corrosive or other harsh environment is frequently not limited by the material itself but rather by the integrity of the coating material. Advanced surface coatings are usually crosslinked organic polymers such as epoxies and polyurethanes which must not shrink, crack or degrade when exposed to environmental extremes. While standard test methods for environmental durability of coatings have been devised, the tests are structured more towards determining the end of life rather than in anticipation of degradation. We have been developing prognostic tools to anticipate coating failure by using a fundamental understanding of their degradation behaviour which, depending on the polymer structure, is mediated through hydrolytic or oxidation processes. Fourier transform infrared spectroscopy (FTIR) is a widely-used laboratory technique for the analysis of polymer degradation and with the development of portable FTIR spectrometers, new opportunities have arisen to measure polymer degradation non-destructively in the field. For IR reflectance sampling, both diffuse (scattered) and specular (direct) reflections can occur. The complexity in these spectra has provided interesting opportunities to study surface chemical and physical changes during paint curing, service abrasion and weathering, but has often required the use of advanced statistical analysis methods such as chemometrics to discern these changes. Results from our studies using this and related techniques and the technical challenges that have arisen will be presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The highly unusual structural and electronic properties of the α-phase of (Si1-xCx)3N4 are determined by density functional theory (DFT) calculations using the Generalized Gradient Approximation (GGA). The electronic properties of α-(Si 1-xCx)3N4 are found to be very close to those of α-C3N4. The bandgap of α-(Si 1-xCx)3N4 significantly decreases as C atoms are substituted by Si atoms (in most cases, smaller than that of either α-Si3N4 or α-C3N4) and attains a minimum when the ratio of C to Si is close to 2. On the other hand, the bulk modulus of α-(Si1-xCx)3N 4 is found to be closer to that of α-Si3N 4 than of α-C3N4. Plasma-assisted synthesis experiments of CNx and SiCN films are performed to verify the accuracy of the DFT calculations. TEM measurements confirm the calculated lattice constants, and FT-IR/XPS analysis confirms the formation and lengths of C-N and Si-N bonds. The results of DFT calculations are also in a remarkable agreement with the experiments of other authors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ligands G1- and G2-oligo (benzyl ether) (PBE) dendrons and their iron(II) complexes [Fe(Gn-PBE)3]A2·xH2O (with n = 1, 2 and A = triflate, tosylate) were prepared. The magnetic properties of the complexes were investigated by a SQUID magnetometer. All complexes exhibit gradual spin transition below room temperature. At very low temperatures the magnetic behaviour reflects zero-field splitting (ZFS) effects. 57Fe-Mössbauer spectroscopy was performed to distinguish between ZFS of high spin species and spin state conversion into the low spin state. Further characterisation was carried out by thermogravimetric analysis (TGA) and FT-IR spectroscopy. Structural features have been determined by powder XRD measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Isolated and purified organosolv eucalyptus wood lignin was depolymerized at different temperatures with and without mesostructured silica catalysts (i.e., SBA-15, MCM-41, ZrO2-SBA-15 and ZrO2-MCM-41). It was found that at 300 oC for 1 h with a solid/liquid ratio of 0.0175/1 (w/v), the SBA-15 catalyst with high acidity gave the highest syringol yield of 23.0% in a methanol/water mixture (50/50, wt/wt). Doping with ZrO2 over these catalysts did not increase syringol yield, but increased the total amount of solid residue. Gas chromatography-mass spectrometry (GC-MS) also identified other main phenolic compounds such as 1-(4-hydroxy-3,5-dimethoxyphenyl)-ethanone, 1,2-benzenediol, and 4-hydroxy-3,5-dimethoxy-benzaldehyde. Analysis of the lignin residues with Fourier transform-Infrared spectroscopy (FT-IR) indicated decreases in the absorption bands intensities of OH group, C-O stretching of syringyl ring and aromatic C-H deformation of syringol unit, and an increase in band intensities associated with the guaiacyl ring, confirming the type of products formed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural characteristics of raw coal and hydrogen peroxide (H2O2)-oxidized coals were investigated using scanning electron microscopy, X-ray diffraction (XRD), Raman spectra, and Fourier transform infrared (FT-IR) spectroscopy. The results indicate that the derivative coals oxidized by H2O2 are improved noticeably in aromaticity and show an increase first and then a decrease up to the highest aromaticity at 24 h. The stacking layer number of crystalline carbon decreases and the aspect ratio (width versus stacking height) increases with an increase in oxidation time. The content of crystalline carbon shows the same change tendency as the aromaticity measured by XRD. The hydroxyl bands of oxidized coals become much stronger due to an increase in soluble fatty acids and alcohols as a result of the oxidation of the aromatic and aliphatic C‐H bonds. In addition, the derivative coals display a decrease first and then an increase in the intensity of aliphatic C‐H bond and present a diametrically opposite tendency in the aromatic C‐H bonds with an increase in oxidation time. There is good agreement with the changes of aromaticity and crystalline carbon content as measured by XRD and Raman spectra. The particle size of oxidized coals (<200 nm in width) shows a significant decrease compared with that of raw coal (1 μm). This study reveals that the optimal oxidation time is ∼24 h for improving the aromaticity and crystalline carbon content of H2O2-oxidized coals. This process can help us obtain superfine crystalline carbon materials similar to graphite in structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The self-assembly of layered molybdenum disulfide–graphene (MoS2–Gr) and horseradish peroxidase (HRP) by electrostatic attraction into a novel hybrid nanomaterial (HRP–MoS2–Gr) is reported. The properties of the MoS2–Gr were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). UV–vis and Fourier transform infrared spectroscopy (FT-IR) indicate that the native structure of the HRP is maintained after the assembly, implying good biocompatibility of MoS2–Gr nanocomposite. Furthermore, the HRP–MoS2–Gr composite is utilized as a biosensor, which displays electrocatalytic activity to hydrogen peroxide (H2O2) with high sensitivity (679.7 μA mM−1 cm−2), wide linear range (0.2 μM–1.103 mM), low detection limit (0.049 μM), and fast amperometric response. In addition, the biosensor also exhibits strong anti-interference ability, satisfactory stability and reproducibility. These desirable electrochemical properties are attributed to the good biocompatibility and electron transport efficiency of the MoS2–Gr composite, as well as the high loading of HRP. Therefore, this biosensor is potentially suitable for H2O2 analysis in environmental, pharmaceutical, food or industrial applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly[(2,5-dimethoxy-p-phenylene)vinylene] (DMPPV) of varying conjugation length was synthesized by selective elimination of organic soluble precursor polymers that contained two eliminatable groups, namely, methoxy and acetate groups. These precursor copolymers were in turn synthesized by competitive nucleophilic substitution of the sulfonium polyelectrolyte precursor (generated by the standard Wessling route) using methanol and sodium acetate in acetic acid. The composition of the precursor copolymer, in terms of the relative amounts of methoxy and acetate groups, was controlled by varying the composition of the reaction mixture during nucleophilic substitution. Thermal elimination of these precursor copolymers at 250 degrees C, yielded partially conjugated polymers, whose color varied from light yellow to deep red. FT-IR studies confirmed that, while essentially all the acetate groups were eliminated, the methoxy groups were intact and caused the interruption in conjugation. Preliminary photoluminescence studies of the partially eliminated DMPPV samples showed a gradual shift in the emission maximum from 498 to 598 nm with increasing conjugation lengths, suggesting that the color of LED devices fabricated from such polymers can, in principle, be fine-tuned.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synthetic routes leading to 12 L-phenylalanine based mono- and bipolar derivatives (1-12) and an in-depth study of their structure-property relationship with respect to gelation have been presented. These include monopolar systems such as N-[(benzyloxy)carbonyl]-L-phenylalanine-N-alkylamides and the corresponding bipolar derivatives with flexible and rigid spacers such as with 1,12-diaminododecane and 4,4'-diaminodiphenylmethane, respectively. The two ends of the latter have been functionalized with N-[(benzyloxy)carbonyl]-L-phenylalanine units via amide connection. Another bipolar molecule was synthesized in which the middle portion of the hydrocarbon segment contained polymerizable diacetylene unit. To ascertain the role of the presence of urethane linkages in the gelator molecule protected L-phenylalanine derivatives were also synthesized in which the (benzyloxy)carbonyl group has been replaced with (tert-butyloxy)carbonyl, acetyl, and benzoyl groups, respectively. Upon completion of the synthesis and adequate characterization of the newly described molecules, we examined the aggregation and gelation properties of each of them in a number of solvents and their mixtures. Optical microscopy and electron microscopy further characterized the systems that formed gels. Few representative systems, which showed excellent gelation behavior was, further examined by FT-IR, calorimetric, and powder X-ray diffraction studies. To explain the possible reasons for gelation, the results of molecular modeling and energy-minimization studies were also included. Taken together these results demonstrate the importance of the presence of (benzyloxy)carbonyl unit, urethane and secondary amide linkages, chiral purities of the headgroup and the length of the alkyl chain of the hydrophobic segment as critical determinants toward effective gelation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate the aptitude of supramolecular hydrogel formation using simple bile acid such as lithocholic acid in aqueous solution in the presence of various dimeric or oligomeric amines. By variation of the choice of the amines in such mixtures the gelation properties could be modulated. However, the replacement of lithocholic acid (LCA) by cholic acid or deoxycholic acid resulted in no hydrogel formation. FT-IR studies confirm that the carboxylate and ammonium residues of the two components are involved in the salt (ion-pair) formation. This promotes further assembly of the components reinforced by a continuous hydrogen bonded network leading to gelation. Electron microscopy shows the morphology of the internal organization of gels of two component systems which also depends significantly on the amine part. Variation of the amine component from the simple 1,2-ethanediamine (EDA) to oligomeric amines in such gels of lithocholic acid changes the morphology of the assembly from long one-dimensional nanotubes to three-dimensional complex structures. Single crystal X-ray diffraction analysis with one of the amine-LCA complexes suggested the motif of fiber formation where the amines interact with the carboxylate and hydroxyl moieties through electrostatic forces and hydrogen bonding. From small angle neutron scattering study, it becomes clear that the weak gel from LCA-EDA shows scattering oscillation due to the presence of non-interacting nanotubules while for gels of LCA with oligomeric amines the individual fibers come together to form complex three-dimensional organizations of higher length scale. The rheological properties of this class of two component system provide clear evidence that the flow behavior can be modulated varying the acid-amine ratio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New supramolecular organogels based on all-trans-tri(p-phenylenevinylene) (TPV) systems possessing different terminal groups, e.g., oxime, hydrazone, phenylhydrazone, and semicarbazone have been synthesized. The self-assembly properties of the compounds that gelate in specific organic solvents and the aggregation motifs of these molecules in the organogels were investigated using UV−vis, fluorescence, FT-IR, and 1H NMR spectroscopy, electron microscopy, differential scanning calorimetry (DSC), and rheology. The temperature variable UV−vis and fluorescence spectroscopy in different solvents clearly show the aggregation pattern of the self-assemblies promoted by hydrogen bonding, aromatic π-stacking, and van der Waals interactions among the individual TPV units. Gelation could be controlled by variation in the number of hydrogen-bonding donors and acceptors in the terminal functional groups of this class of gelators. Also wherever gelation is observed, the individual fibers in gels change to other types of networks in their aggregates depending on the number of hydrogen-bonding sites in the terminal functions. Comparison of the thermal stability of the gels obtained from DSC data of different gelators demonstrates higher phase transition temperature and enthalpy for the hydrazone-based gelator. Rheological studies indicate that the presence of more hydrogen-bonding donors in the periphery of the gelator molecules makes the gel more viscoelastic solidlike. However, in the presence of more numbers of hydrogen-bonding donor/acceptors at the periphery of TPVs such as with semicarbazone a precipitation as opposed to gelation was observed. Clearly, the choice of the end functional groups and the number of hydrogen-bonding groups in the TPV backbone holds the key and modulates the effective length of the chromophore, resulting in interesting optical properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lithium rubidium sulphate, LiRbSO4 (LRS), undergoes a sequence of four phase transitions at 166, 185, 202 and 204°C. The phase between 202 and 204°C is incommensurate. Polarized phonon Raman spectra in the frequency region of 50-1200 cm-1 are presented to identify the external and internal vibrational modes at room temperature. The internal mode frequencies of the sulphate ions are presented in the temperature region from -150 to 230°C covering all the phase transitions. The total integrated areas of the 1, 2 and 4 modes show an anomalous increase across the phase transitions. The frequencies of the symmetric stretching (1) and symmetric bending (2) modes do not show any changes at the phase transitions, but the width of the 2 mode shows changes across the phase transitions. A small increase in the linewidth of the 2 mode observed in the incommensurate phase is attributed to the influence of the incommensurate modulation wave. A DSC thermogram showed endothermic peaks during heating at all the phase transitions. The IR spectrum recorded at room temperature showed the expected Au and Bu internal modes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new guanidino amine has been isolated from Lathyrus sativus seedlings and chararterized as homoagmatine on the basis of various physico-chemical criteria including IR spectrum and comparison with that chemically synthesized. Homoagmatine is accumulated in the embryos axis while its precursor, homoarginine, is lost from the cotyledons. However, there was a progressive increase in homoarginine content of the embryo axis during development. Since the amine content of the whole seedlings corresponded to nearly 20–25 % of net decrease in homoarginine levels, it is concluded that the catabolism of homoarginine through homoagmatine represents a major pathway of metabolism of the arnino acid.