263 resultados para FLUORINATED POLYURETHANES
Resumo:
A new class of soluble six-membered ring polynaphthalimides (PNIs) was synthesized from asymmetrical fluorinated naphthalenesubstituted monomers. All the resulting PNIs were easily soluble in many organic solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO). and chloroform. They also showed good thermal stability with glass transition temperature of 340-386 degrees C, 10% weight loss temperature in excess of 529 degrees C. Polyimide 3c could be solution-cast into tough and flexible film. The film had a tensile strength, elongation at break, and Young's modulus of about 117.6 Wa, 23.6%, and 1.77 GPa, respectively. The gas permeation property of the film of 3c was investigated with oxygen permeability coefficient (PO2 = 3.99) and permeability selectivity coefficient of oxygen to nitrogen (P-O2/P-N2 = 5.27). Therefore, these materials are expected to be a good alternative to PIs based on five-membered rings with applications in gas separation membranes.
Resumo:
A series of biodegradable polyurethanes (PUs) are synthesized from the copolymer diols prepared from L-lactide and epsilon-caprolactone (CL), 2,4-toluene diisocyanate, and 1,4-butanediol. Their thermal and mechanical properties are characterized via FTIR, DSC, and tensile tests. Their T(g)s are in the range of 28-53 degrees C. They have high modulus, tensile strength, and elongation ratio at break. With increasing CL content, the PU changes from semicrystalline to completely amorphous. Thermal mechanical analysis is used to determine their shape-memory property. When they are deformed and fixed at proper temperatures, their shape-recovery is almost complete for a tensile elongation of 150% or a compression of 2-folds. By changing the content of CL and the hard-to-soft ratio, their T(g)s and their shape-recovery temperature can be adjusted. Therefore, they may find wide applications.
Resumo:
A new fluorinated diamine monomer, [1,4-bis(4-amino-3-trifluoromethylphenoxy)benzene (2)], and a known isomeric analog 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (3) were synthesized. A series of organosoluble polyimides Ia-d and IIa were prepared from the diamines (2, 3) and dianhydrides (a-d) by a high-temperature one-step method. The effects of the trifluoromethyl substituents on the properties of polyimides were evaluated through the study of their soluble, thermal, optical, and gas permeability properties. Polyimides (Ia-d) had glass transition temperatures between 229 and 279 degrees C, and the temperatures at 5% weight loss ranged from 510 to 533 degrees C under nitrogen. These polyimides could be cast into flexible and tough membranes from DMAc solutions. The membranes had tensile strengths in the range of 137-169 MPa, tensile modulus in the range of 1.6-2.2 GPa and elongations at break from 11% to 14%. The polyimide la with trifluoromethyl groups ortho to the imide nitrogen exhibited enhanced gas permeability, solubility, transparency, and thermal stability compared with the isomeric polyimide IIa with the CF3 group meta to the imide nitrogen.
Resumo:
A series of polylactide polyurethanes (PLAUs) were synthesized from poly(L-lactide) diols, hexamethylene diisocyanate (HDI), and 1,4-butanediol (BDO). Their thermal and mechanical properties and shape-memory behavior were studied by infrared spectroscopy (IR), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXID), tensile testing, and thermal mechanical analysis (TMA). The T(g)s of these polymers were in the range of 33-53 degrees C, and influenced by the Mn of the PLA diol and the ratio of the soft-segment to the hard-segment. These materials can restore their shapes almost completely after 150% elongation or twofold compression. By changing the M-n of the PLA diol and the ratio of the hard-to-soft-segment, their Ts and shape-recovery temperatures can be adjusted to the neighborhood of the body temperature. Therefore, these PLAUs are expected to find practical medical applications.
Resumo:
Cyclic oligomers containing hexafluoroiso-propylidene(HFIP) units were prepared in excellent yields by a nucleophilic aromatic substitution reaction of 4,4(7)- (hexafluoroisopropylidene) diphenol with difluoro-monomers in the presence of anhydrous potassium carbonate under pseudo high dilution conditions. A combination of GPC, MALDI-TOF MS and NMR analysis confirmed the structure of the cyclic oligomers. All macrocyclic oligomers are crystalline and undergo facile melt polymerization to give high molecular weight fluorinated polyethers.
Resumo:
A novel three-dimensional fluorinated gallium phosphate has been hydrothermally,synthesized by using diethylenetriamine as an organic structure-directing agent. X-ray single crystal structure analysis indicates this compound crystallizes in the orthorhombic space group P-bca, a = 1. 605 6 (7) nm, b = 1.011 4 (4) nm, c=1. 854 6(5) nm, V=3. 011 6(19) nm(3), Z=4. The three-dimensional framework based on linkage of corner-sharing polyhedron PO4, GaO4F and GaO4F2 delimit ten-ring channels along b axis in which the triply protonated amines are located serving as charge compensating guests and supporters.
Resumo:
Wydział Chemii
Resumo:
Among the wide variety of materials employed in the manufacture of shoes, thermoplastic polyurethanes (TPUs) are one of the most widely used. Given its widespread use, and associated waste management problems, the development of more biodegradable and evironmentally compatible solutions is needed. In this work, a polyester-based TPU used in the footwear industry for outsoles production was modified by compounding with lignin, starch and cellulose at content of 4% (w/w). The biodegradability was evaluated by using agar plate tests with the fungi Aspergillus niger ATCC16404, the Gram-negative bacteria Pseudomonas aeruginosa ATCC9027 and an association of both (consortium), and soil tests at 37 °C and 58 °C. The obtained results evidenced a positive effect of the tested biobased additives, the most favourable results being registered with lignin. These results were corroborated by the structural modifications observed by FTIR analysis. Additionally, mechanical tests prove the suitability of using the lignin modified TPUs for footwear outsoles production.
Resumo:
The concept of pellicular particles was suggested by Horváth and Lipsky over fifty years ago. The reasoning behind the idea of these particles was to improve column efficiency by shortening the pathways analyte molecules can travel, therefore reducing the effect of the A and C terms. Several types of shell particles were successfully marketed around this time, however with the introduction of high quality fully porous silica under 10 μm, shell particles faded into the background. In recent years a new generation of core shell particles have become popular within the separation science community. These particles allow fast and efficient separations that can be carried out on conventional HPLC systems. Chapter 1 of this thesis introduces the chemistry of chromatographic stationary phases, with an emphasis on silica bonded phases, particularly focusing on the current state of technology in this area. The main focus is on superficially porous silica particles as a support material for liquid chromatography. A summary of the history and development of these particles over the past few decades is explored, along with current methods of synthesis of shell particles. While commercial shell particles have a rough outer surface, Chapter 2 focuses on the novel approach to growth of smooth surface superficially porous particles in a step-by-step manner. From the Stöber methodology to the seeded growth technique, and finally to the layer-bylayer growth of the porous shell. The superficially porous particles generated in this work have an overall diameter of 2.6 μm with a 350 nm porous shell; these silica particles were characterised using SEM, TEM and BET analysis. The uniform spherical nature of the particles along with their surface area, pore size and particle size distribution are examined in this chapter. I discovered that these smooth surface shell particles can be synthesised to give comparable surface area and pore size in comparison to commercial brands. Chapter 3 deals with the bonding of the particles prepared in Chapter 2 with C18 functionality; one with a narrow and one with a wide particle size distribution. This chapter examines the chromatographic and kinetic performance of these silica stationary phases, and compares them to a commercial superficially porous silica phase with a rough outer surface. I found that the particle size distribution does not seem to be the major contributor to the improvement in efficiency. The surface morphology of the particles appears to play an important role in the packing process of these particles and influences the Van Deemter effects. Chapter 4 focuses on the functionalisation of 2.6 μm smooth surface superficially porous particles with a variety of fluorinated and phenyl silanes. The same processes were carried out on 3.0 μm fully porous silica particles to provide a comparison. All phases were accessed using elemental analysis, thermogravimetric analysis, nitrogen sorption analysis and chromatographically evaluated using the Neue test. I observed comparable results for the 2.6 μm shell pentaflurophenyl propyl silica when compared to 3.0 μm fully porous silica. Chapter 5 moves towards nano-particles, with the synthesis of sub-1 μm superficially porous particles, their characterisation and use in chromatography. The particles prepared are 750 nm in total with a 100 nm shell. All reactions and testing carried out on these 750 nm core shell particles are also carried out on 1.5 μm fully porous particles in order to give a comparative result. The 750 nm core shell particles can be synthesised quickly and are very uniform. The main drawback in their use for HPLC is the system itself due to the backpressure experienced using sub – 1 μm particles. The synthesis of modified Stöber particles is also examined in this chapter with a range of non-porous silica and shell silica from 70 nm – 750 nm being tested for use on a Langmuir – Blodgett system. These smooth surface shell particles have only been in existence since 2009. The results displayed in this thesis demonstrate how much potential smooth surface shell particles have provided more in-depth optimisation is carried out. The results on packing studies reported in this thesis aims to be a starting point for a more sophisticated methodology, which in turn can lead to greater chromatographic improvements.
Resumo:
We report a new inkless catalytic muCP technique that achieves accurate, fast, and complete pattern reproduction on SAMs of Boc- and TBS-protected thiols immobilized on gold using a polyurethane-acrylate stamp functionalized with covalently bound sulfonic acids. Pattern transfer is complete at room temperature just after one minute of contact and renders sub-200 nm size structures of chemically differentiated SAMs.
Resumo:
Commercially available implantable needle-type glucose sensors for diabetes management are robust analytically but can be unreliable clinically primarily due to tissue-sensor interactions. Here, we present the physical, drug release and bioactivity characterization of tubular, porous dexamethasone (Dex)-releasing polyurethane coatings designed to attenuate local inflammation at the tissue-sensor interface. Porous polyurethane coatings were produced by the salt-leaching/gas-foaming method. Scanning electron microscopy and micro-computed tomography (micro-CT) showed controlled porosity and coating thickness. In vitro drug release from coatings monitored over 2 weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture. Acute animal studies were used to determine the appropriate Dex payload for the implanted porous coatings. Pilot short-term animal studies showed that Dex released from porous coatings implanted in rat subcutis attenuated the initial inflammatory response to sensor implantation. These results suggest that deploying sensors with the porous, Dex-releasing coatings is a promising strategy to improve glucose sensor performance.
Resumo:
BACKGROUND: The bioluminescence technique was used to quantify the local glucose concentration in the tissue surrounding subcutaneously implanted polyurethane material and surrounding glucose sensors. In addition, some implants were coated with a single layer of adipose-derived stromal cells (ASCs) because these cells improve the wound-healing response around biomaterials. METHODS: Control and ASC-coated implants were implanted subcutaneously in rats for 1 or 8 weeks (polyurethane) or for 1 week only (glucose sensors). Tissue biopsies adjacent to the implant were immediately frozen at the time of explant. Cryosections were assayed for glucose concentration profile using the bioluminescence technique. RESULTS: For the polyurethane samples, no significant differences in glucose concentration within 100 μm of the implant surface were found between bare and ASC-coated implants at 1 or 8 weeks. A glucose concentration gradient was demonstrated around the glucose sensors. For all sensors, the minimum glucose concentration of approximately 4 mM was found at the implant surface and increased with distance from the sensor surface until the glucose concentration peaked at approximately 7 mM at 100 μm. Then the glucose concentration decreased to 5.5-6.5 mM more than 100 μmm from the surface. CONCLUSIONS: The ASC attachment to polyurethane and to glucose sensors did not change the glucose profiles in the tissue surrounding the implants. Although most glucose sensors incorporate a diffusion barrier to reduce the gradient of glucose and oxygen in the tissue, it is typically assumed that there is no steep glucose gradient around the sensors. However, a glucose gradient was observed around the sensors. A more complete understanding of glucose transport and concentration gradients around sensors is critical.
Resumo:
Although the release of nitric oxide (NO) from biomaterials has been shown to reduce the foreign body response (FBR), the optimal NO release kinetics and doses remain unknown. Herein, polyurethane-coated wire substrates with varying NO release properties were implanted into porcine subcutaneous tissue for 3, 7, 21 and 42 d. Histological analysis revealed that materials with short NO release durations (i.e., 24 h) were insufficient to reduce the collagen capsule thickness at 3 and 6 weeks, whereas implants with longer release durations (i.e., 3 and 14 d) and greater NO payloads significantly reduced the collagen encapsulation at both 3 and 6 weeks. The acute inflammatory response was mitigated most notably by systems with the longest duration and greatest dose of NO release, supporting the notion that these properties are most critical in circumventing the FBR for subcutaneous biomedical applications (e.g., glucose sensors).
Resumo:
Ruthenium, rhodium, and iridium piano stool complexes of the pentafluorophenyl-substituted diphosphine (C6F5)2PCH2P(C6F5)2 (2) have been prepared and structurally characterized by single-crystal X-ray diffraction. The Cp-P tethered complex [{(C5Me4CH2C6F4(C6F5)CH2P(C6F5)2}RhCl2] (9), in which only one phosphorus is coordinated to the rhodium, was prepared by thermolysis of a slurry of [Cp*RhCl(-Cl)]2 and 2 and was structurally characterized by single-crystal X-ray diffraction. The tethering occurs by intramolecular dehydrofluorinative coupling of the pentamethylcyclopentadienyl ligand and P,P-coordinated 2. The geometric changes that occur on tethering force dissociation of one of the phosphorus atoms. The effects of introducing phosphine ligands to the coordination sphere of piano stool hydrogen transfer catalysts have been studied. The complexes of fluorinated phosphine complexes are found to transfer hydrogen at rates that compare favorably with leading catalysts, particularly when the phosphine and cyclopentadienyl functionalities are tethered. The highly chelating Cp-PP complex [(C5Me4CH2-2-C5F3N-4-PPhCH2CH2PPh2)RhCl]BF4 (1) was found to outperform all other complexes tested. The mechanism of hydrogen transfer catalyzed by piano stool phosphine complexes is discussed with reference to the trends in activity observed.
Resumo:
Piano stool complexes of rhodium and iridium activated by fluorinated and non-fluorinated N-heterocyclic carbene (NHC) ligands were shown to be catalysts for racemization in the one-pot chemoenzymic dynamic kinetic resolution (DKR) of secondary alcohols. Excellent conversions and good enantioselectivities were observed for alkyl aryl and dialkyl secondary alcohols.