847 resultados para Excess returns
Resumo:
The omega(1)-heterodecoupled-C-13-filtered proton detected NMR experiments are reported for the accurate quantification of enantiomeric excess in chiral molecules embedded in chiral liquid crystal. The differential values of both H-1-H-1 and C-13-H-1 dipolar couplings in the direct dimension and only H-1-H-1 dipolar couplings in the indirect dimension enable unraveling of overlapped enantiomeric peaks. The creation of unequal C-13-bound proton signal for each enantiomer in the INEPT block and non-uniform excitation of coherences in homonuclear multiple quantum experiments do not yield accurate quantification of enantiomeric excess. In circumventing these difficulties, a coupling dependent intensity correction factor has been invoked. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The higher substrate and chiral auxiliary concentration is a pre-requisite to obtain efficient separation of H-1 NMR signals of enantiomers. The higher concentration of chiral lanthanide shift reagents provides broadened spectral lines resulting in a severe loss of resolution between the enantiomer resonances. In order to circumvent such difficulties, herein we present the application and the usefulness of a selective F-1 decoupled correlation (COSY) experiment which yields proton decoupled proton spectra in the indirect dimension. The potentiality of the experiment is demonstrated on several chiral compounds possessing different functional groups, employing either a lanthanide shift reagent or a solvating reagent as chiral auxiliaries. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The effect of Fe content (0.2 to 0.6 pct) on the microstructure and mechanical properties of a cast Al-7Si-0.3Mg (LM 25/356) alloy has been investigated. Further, 1 pct mischmetal (MM) additions (a mixture of rare-earth (RE) elements) were made to these alloys, and their mechanical properties at room and at elevated temperatures (up to 200 degreesC) were evaluated. A structure-property correlation on this alloy was attempted using optical microstructure analysis, fractographs, X-ray diffraction, energy-dispersive analysis of X-rays (EDX), and quantitative metallography by image analysis. An increase in Fe content increased the volume percentage of Fe-bearing intermetallic compounds (beta and pi phases), contributing to the lower yield strength (YS), ultimate tensile strength (UTS), percentage elongation, and higher hardness. An addition of 1 pct MM to the alloys containing 0.2 and 0.6 pct Fe was found to refine the microstructure; modify the eutectic silicon and La, Ce, and Nd present in the MM; form different intermetallic compounds with Al, Si, Fe, and Mg; and improve the mechanical properties of the alloys both at room and elevated temperatures.
Resumo:
A new model for the structure, elastic properties and dynamics of foams and concentrated emulsions is presented, based on the idea of local regions lacking shear-rigidity in one or more directions which vary randomly through the medium. It is shown to lead naturally to slow (t(-1/2)) stress-relaxation, implying a piece of the dynamic modulus scaling with frequency omega as omega(1/2). Striking experimental confirmation of this prediction using a novel experimental technique is reported, and challenges for the theoretician are offered. This work was done in collaboration with Andrea Liu, Tom Mason, Hu Gang, and David Weitz [1].
Resumo:
Preferential oxidation of CO (CO-PROX) was carried out over Ni supported on CeO2 prepared by the co-precipitation method. The influence of metal loadings (2.5, 5 and 10 wt.% Ni) and the reaction conditions such as reaction temperature and feed composition on CO oxidation and oxidation selectivity were evaluated by using dry reformate gas. No other reactions like CO or CO2 methanation, coking, reverse water gas shift (RWGS) reaction is observed in the temperature range of 100-200 A degrees C on these catalysts. Hydrogen oxidation dominates over CO oxidation above the temperature of 200 A degrees C. An increase in oxygen leads to an increase in CO conversion but a simultaneous decrease in the O-2 selectivity. It has been noticed that 5 and 10 % Ni/CeO2 show better catalytic activity towards CO-PROX reaction. These catalysts were characterized by S-BET, XRD, TEM, XPS and H-2-TPR.
Resumo:
NMR spectroscopic chiral visualization, unambiguous assignment of peaks pertaining to R and S enantiomers and the subsequent measurement of enantiomeric composition demands a highly resolved spectrum. The method fails when the spectrum is severely overcrowded or highly complex, thereby hampering the determination of enantiomeric excess. In order to circumvent such problems we propose the utility of pure shift spectrum obtained by resolving the chemical shift and coupling information in two orthogonal dimensions. The skew projected spectrum yields singlet's at the respective chemical shift positions, permitting the unravelling of the superimposed spectral transitions for each enantiomer and measurement of enantiomeric composition. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na+ and K+ channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.
Resumo:
We study an s-channel resonance R as a viable candidate to fit the diboson excess reported by ATLAS. We compute the contribution of the similar to 2 TeV resonance R to semileptonic and leptonic final states at the 13 TeV LHC. To explain the absence of an excess in the semileptonic channel, we explore the possibility where the particle R decays to additional light scalars X, X or X, Y. A modified analysis strategy has been proposed to study the three-particle final state of the resonance decay and to identify decay channels of X. Associated production of R with gauge bosons has been studied in detail to identify the production mechanism of R. We construct comprehensive categories for vector and scalar beyond-standard-model particles which may play the role of particles R, X, Y and find alternate channels to fix the new couplings and search for these particles.
Resumo:
Resumen: El trabajo analiza la evolución de los retornos privados a la educación superior en Argentina durante el período 1974–2002 y cómo éstos se vieron afectados por el desempleo. La conclusión es que los retornos a la educación son mayores si se los corrige teniendo en cuenta el desempleo para cada nivel educativo, ya que a mayor nivel, menor tasa de desempleo. Al evaluar invertir en educación no se debería considerar simplemente el diferencial de ingresos sino también la mayor probabilidad de tener un trabajo. Esto es relevante en un país como Argentina que pasó de tener tasas de desempleo cercanas a 5% en la década del ochenta a tener tasas de dos dígitos a fines del siglo XX y comienzos del XXI.
Resumo:
This paper estimates a standard version of the New Keynesian Monetary (NKM) model augmented with financial variables in order to analyze the relative importance of stock market returns and term spread in the estimated U.S. monetary policy rule. The estimation procedure implemented is a classical structural method based on the indirect inference principle. The empirical results show that the Fed seems to respond to the macroeconomic outlook and to the stock market return but does not seem to respond to the term spread. Moreover, policy inertia and persistent policy shocks are also significant features of the estimated policy rule.
Resumo:
Published as an article in: The Quarterly Review of Economics and Finance, 2004, vol. 44, issue 2, pages 224-236.