910 resultados para Ethylenediaminetetra- acetic acid
Resumo:
Using combination of Mn-Co transition metal species with N-hydroxyphthalimide as a catalyst for one-step oxidation of cyclohexane with molecular oxygen in acetic acid at 353 K can give more than 95% selectivity towards oxygenated products with adipic acid as a major product at a high conversion (ca. 78%). A turnover number of 74 for this partial oxidation are also recorded.
Resumo:
Endogenous contents of indolyl-3-acetic acid (IAA) and abscisic acid (ABA) were quantified in excised roots of Catasetum fimbriatum (Orchidaceae) cultured in vitro on solidified Vacin and Went medium with 1, 2, 4, 6, 8 and 10 % sucrose, as well as 2 % sucrose plus mannitol. Maximum root growth was observed in media with 4 % sucrose and 2 % sucrose plus 2.2 % mannitol, suggesting that a moderate water or osmotic stress promotes orchid root growth. Contents of both ABA and IAA increased in parallel to increasing sucrose concentration and a correlation between root elongation and the ABA/IAA ratio was observed. Incubating isolated C. fimbriatum roots with radiolabeled tryptophan, we showed an accumulation of IAA and its conjugates.
Resumo:
A simple, rapid and inexpensive method for the determination of sparfloxacin in tablets is described. The procedure is based on the use of volumetric dosage in a nonaqueous medium in glacial acetic acid with 0.1 M perchloric acid. The method validation yielded good results and included precision and accuracy. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Biotechnological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically and with dilute or concentrate mineral acids. The present study used dilute sulfuric acid as a catalyst for hydrolysis of Eucalyptus grandis residue. The purpose of this paper was to optimize the hydrolysis process in a 1.41 pilot-scale reactor and investigate the effects of the acid concentration, temperature and residue/acid solution ratio on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). This study was based on a model composition corresponding to a 2 3 orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of residue. The considered optimum conditions were: H2SO4 concentration of 0.65%, temperature of 157 degrees C and residue/acid solution ratio of 1/8.6 with a reaction time of 20 min. Under these conditions, 79.6% of the total xylose was removed and the hydrolysate contained 1.65 g/l glucose, 13.65 g/l xylose, 1.55 g/l arabinose, 3.10 g/l acetic acid, 1.23 g/l furfural and 0.20 g/l 5-hydroxymethylfurfural. (c) 2006 Published by Elsevier Ltd.
Resumo:
Dilute acid hydrolysis studies were performed on forest residues of Eucalyptus grandis, in a cylindrical reactor of stainless steel. The kinetics of this hydrolysis reaction was investigated employing 0.65% sulfuric acid, a residue/acid solution ratio of 1/9 (w/w), temperatures of 130, 140, 150, and 160 degrees C, and reaction times in the range 20-100 min. The results showed that, under the optimized conditions of acid hydrolysis employed in this study, the variables temperature and reaction time had a strong influence on hemicellulose removal and a small influence on the degree of lignin and cellulose removal. The highest xylose extraction yield was 87.6% attained at 160 degrees C, after 70 min reaction time, simultaneously with the formation of decomposition products, namely 2.8% acetic acid, 0.6% furfural, and 0.06% 5-hydroxymethylfurfural. A similar xylose extraction yield (82.8%) was observed at 150 degrees C after 100 min, with the formation of 3.2% acetic acid, 1.0% furfural, and 0.07% 5-hydroxymethylfurfural. The kinetic parameters determined at 130, 140, 150, and 160 degrees C for degradation of xylan present in the hemicellulose of the eucalyptus forest residue during the formation of xylose were the first-order reaction rate constants (k) for each temperature, 1.22 x 10(-4), 2.12 x 10(-4), 5.43 x 10(-4), and 9.05 x 10(-4) s(-1), respectively, and an activation energy (E-a) of 101.3 kJ mol(-1).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Hypochlorous acid (HOCl) released by activated leukocytes has been implicated in the tissue damage that characterizes chronic inflammatory diseases. In this investigation, 14 indole derivatives, including metabolites such as melatonin, tryptophan and indole-3-acetic acid, were screened for their ability to inhibit the generation of this endogenous oxidant by stimulated leukocytes. The release of HOCl was measured by the production of taurine-chloramine when the leukocytes (2 x 10(6) cells/mL) were incubated at 37ºC in 10 mM phosphate-buffered saline, pH 7.4, for 30 min with 5 mM taurine and stimulated with 100 nM phorbol-12-myristate acetate. Irrespective of the group substituted in the indole ring, all the compounds tested including indole, 2-methylindole, 3-methylindole, 2,3-dimethylindole, 2,5-dimethylindole, 2-phenylindole, 5-methoxyindole, 6-methoxyindole, 5-methoxy-2-methylindole, melatonin, tryptophan, indole-3-acetic acid, 5-methoxy-2-methyl-3-indole-acetic acid, and indomethacin (10 µM) inhibited the chlorinating activity of myeloperoxidase (MPO) in the 23-72% range. The compounds 3-methylindole and indole-3-acetic acid were chosen as representative of indole derivatives in a dose-response study using purified MPO. The IC50 obtained were 0.10 ± 0.03 and 5.0 ± 1.0 µM (N = 13), respectively. These compounds did not affect the peroxidation activity of MPO or the production of superoxide anion by stimulated leukocytes. By following the spectral change of MPO during the enzyme turnover, the inhibition of HOCl production can be explained on the basis of the accumulation of the redox form compound-II (MPO-II), which is an inactive chlorinating species. These results show that indole derivatives are effective and selective inhibitors of MPO-chlorinating activity.
Resumo:
Objectives: Iron ions (Fe2+) have been shown to be cariostatic in many studies particularly by their ability to reduce bacterial metabolism. Nevertheless, the role of iron ions on dissolution of enamel is unexplored. The aim of the present study was therefore to investigate the protective effect of increasing concentrations (0-120 mmol/L) of Fe2+ on the dissolution of enamel.Design: Enamel powder was subjected to acetic acid made with increasing concentrations with respect to FeSO4 center dot 7H(2)O. In order to determine the amount of enamel dissolved, the phosphate released in the medium was analysed spectrophotometrically using the Fiske-Subarrow method. Data were tested using Kruskall-Wall and Dunn's tests (p < 0.05). The degree of protection was found to approach maximum at about 15 mmol/L Fe2+. Higher concentrations of Fe2+ did not have an extra effect on inhibition of dissolution of enamel powder. In the next step, the protective effect of 15 mmol/L Fe2+ against mineral dissolution of the bovine enamel was evaluated using a simple abiotic model system. Enamel blocks were exposed to a sequence of seven plastic vials, each containing 1 mL of 10 mmol/L acetic acid. The acid in vial 4 was made 15 mmol/L with respect to FeSO4 center dot 7H(2)O. The mineral dissolved during each challenge was thus determined by phosphate released as described above. Data were tested using two-way ANOVA (p < 0.05). Results: Lower demineralisation (around 45%) was found in vial 4 (with Fe) that continued stable until vial 7.Conclusions: Thus, our data suggest that Fe2+, can be effective on inhibition of dissolution of enamel and that this effect may be durable. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The photo-Fenton process using potassium ferrioxalate as a mediator in the photodegradation reaction of organochloride compounds in an aqueous medium was investigated. The influence of parameters such as hydrogen peroxide and ferrioxalate concentrations and initial pH, was evaluated using dichloroacetic acid (DCA) as a model compound under black-light lamp irradiation. An upflow annular photoreactor, operating in a single pass or recirculating mode was used during photodegradation experiments with artificial light. The extent of the release of chloride ions was used to evaluate the photodegradation reaction. The optimum pH range observed was 2.5-2.8. The efficiency of DCA dechlorination increased with increasing concentrations of H2O2 and potassium ferrioxalate, reaching a plateau after the addition of 6 and 1.5 mmol/L of those reagents, respectively. The total organic carbon (TOC) content in DCA and 2,4-dichlorophenol (DCP) solutions was compared with the chloride released after photodegradation. The influence of natural solar light intensity, measured at 365 nm, was evaluated for the dechlorination of DCA on typical summer's days showing a linear dependency. The photodegradation of DCA using black-light lamp and solar irradiation was compared.
Resumo:
An inexpensive, simple, precise and rapid method for the determination of fluoroquinolone gatifloxacin in tablets is described. The procedure is based on the use of volumetric dosage in a non-aqueous medium in glacial acetic acid with 0.1 M perchloric acid. The method validation yielded good results and included the precision, recovery and accuracy. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay.
Resumo:
This study quantified alterations in root dentin permeability after exposure to different acid beverages. Twenty-five third molars were sectioned below the cementoenamel junction, the root segment was collected, and the pulp tissue was removed. The root segments were connected to a hydraulic pressure apparatus to measure the permeability of root dentin after the following sequential steps, with 5 specimens in each: 1) phosphoric acid etching for 30 s (maximum permeability), 2) root planning to create new smear layer, 3) exposure to different acid substances for 5 min (orange, cola drink, vinegar, white wine, lemon juice), 4) toothbrushing with sonic toothbrush for 3 min, 5) toothbrushing with sonic toothbrush plus dentifrice for 3 min. Considering step I as 100%, the data were converted into percentage and each specimen was its own control. Data were analyzed statistically by Kruskal-Wallis and Dunn's post test at 5% significance level. All acidic substances increased dentin permeability significantly after scraping (p<0.05). Toothbrushing after exposure to acid substances decreased dentin permeability and the association with dentifrice accentuated the decrease (p<0.05), except for the specimens treated with cola drink. Thus, it may be concluded that all tested acid fruit juices increased dentin permeability, and toothbrushing with or without dentifrice can decrease root dentin permeability after dentin exposure to acid diet.
Resumo:
Reactive species generated by Fe0 oxidation promoted by O2 (catalyzed or not by ligands) are able to degrade contaminant compounds like the herbicide 2,4-dichlorophenoxyacetic acid. The degradation of 2,4-D was influenced by the concentrations of zero valent iron (ZVI) and different ligands, as well as by pH. In the absence of ligands, the highest 2,4-D degradation rate was obtained at pH 3, while the highest percentage degradation (50%) was achieved at pH 5 after 120 min of reaction. Among the ligands studied (DTPA, EDTA, glycine, oxalate, and citrate), only ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) significantly enhanced oxidation of 2,4-D. This increase in oxidation was observed at all pH values tested (including neutral to alkaline conditions), indicating the feasibility of the technique for treatment of contaminated water. In the presence of EDTA, the oxidation rate was greater at pH 3 than at pH 5 or 7. Increasing the EDTA concentration increased the rate and percentage of 2,4-D degradation, however increasing the Fe0 concentration resulted in the opposite behavior. It was found that degradation of EDTA and 2,4-D occurred simultaneously, and that the new methodology avoided any 2,4-D removal by adsorption/coprecipitation. © 2013 Elsevier Ltd.
Resumo:
The objective of this study was to determine the effect of applying fibrolytic enzymes at ensiling, either alone or in combination with a ferulic acid esterase-producing bacterial silage inoculant, on the silage conservation characteristics and nutritive value of alfalfa (Medicago sativa L). Second-cut alfalfa (340 g DM/kg fresh crop) was harvested, wilted, chopped and sub-sampled into 24 batches. Samples were randomly allocated in triplicate to one of four enzyme product treatments supplying endoglucanases and xylanases: none (control), EN1, EN2, EN3; applied alone or in combination with a ferulic acid esterase-producing silage inoculant (FAEI). Treatments were arranged in a 4 x 2 factorial design. All enzyme treatments were applied at 2 ml enzyme product/kg herbage DM, and inoculant was applied at 1 x 10(5) cfu/g fresh herbage. Samples were packed into laboratory-scale silos and stored for 7, 27 or 70 days, and analysed for dry matter (DM) losses, aerobic stability, chemical composition and in vitro ruminal degradability. The use of enzymes did not affect (P>0.05) ensilage DM losses or lactic or acetic acid concentrations after 70 days of ensilage, compared to the control silage. Silage produced using EN1 had lesser neutral detergent fibre (aNDF, P=0.046) and acid detergent fibre (ADF; P=0.006) concentrations than control silage. However, no difference (P>0.05) was observed between the control silage and silage produced with EN1 for aNDF or ADF degradability (NDFD, ADFD). Silages produced with FAEI had greater DM losses (P=0.017) and pH (P<0.001) and lesser NDFD (P=0.019), ADFD (P=0.010) and proportion of lactic acid in the total fermentation products (P=0.006) after 70 days of ensilage, compared to uninoculated silages. The use of fibrolytic enzymes did not have a major effect on the ensilage fermentation of alfalfa, either ensiled alone or with an inoculant. No advantage in ruminal DM or fibre degradability was observed for silages produced with fibrolytic enzymes. The use of a ferulic acid esterase-producing inoculant alone did not improve the nutritive value of alfalfa silage, and did not promote any incremental effects when applied in combination with fibrolytic enzyme products. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents electrochemical experiments on natural pyrite that combine potentiostatic and voltammetric techniques. X-ray microanalysis is used as an auxiliary technique. The layer growth on pyrite surface is conducted in a wide range of pH and potential range: 3.4 <= pH <= 5.9 with E = 0.80 V (versus SHE), and 0.80 V <= E <= 1.00 V with pH 4.5 (versus SHE) in acetic acid-acetate buffer. This work is unique for two reasons: (1) phenomenological model about layer growth is applied and mathematical-physic consistence is verified and (2) Meyer's hypotheses of chemical mechanism are used to explain kinetic parameters of the phenomenological model. (c) 2005 Elsevier B.V. All rights reserved.