961 resultados para Estrogen Receptor
Resumo:
The nuclear receptor (NR) superfamily is comprised of receptors for small lipopfilic ligands such as steroid hormones, thyroid hormone, retinoids, and vitamin D. NRs are ligand-inducible transcription factors capable of both activating and repressing their target gene expression. They control a wide range of biological functions connected to growth, development, and homeostasis. In addition to the ligand-regulated receptors, the family includes a large group of receptors whose physiological ligands are unknown. These receptors are referred to as orphan NRs. Estrogen-related receptor gamma (ERRgamma) belongs to the ERR subfamily of orphan NRs together with the related ERRalpha and ERRbeta. ERRs share amino acid sequence homology with the classical estrogen receptors (ERs) but they are unable to bind natural estrogenic ligands. ERRgamma is expressed in several embryonic and adult tissues but its biological role is still largely unknown. ERRgamma activates reporter gene expression in transfected cells independently of added hormones implying that ERRgamma harbors constitutive activity. However, the intrinsic activity of ERRgamma can be inhibited by synthetic compounds such as the selective estrogen receptor modulator 4-hydroxytamoxifen (4-OHT). Ligands of NRs can act as agonists that activate transcription, as antagonists that prevent activation of transcription, or as inverse agonists that antagonize the constitutive transcriptional activity of receptor. Most of the synthetic ERRgamma ligands act as inverse agonists but recently, a synthetic ERRgamma agonist GSK4716 was identified. This demonstrates that it is possible to design and identify agonists for ERRgamma. Prior to this thesis work, the structural and functional characteristics of ERRgamma were largely unknown. The aim of this study was to define the functional requirements for ERRgamma-mediated transcriptional regulation and to examine the cross-talk between ERRgamma and other NRs. Due to the fact that natural physiological ligands of ERRgamma are unknown, another aim of this study was to seek new natural compounds that may affect transcriptional activity of ERRgamma. Plant-derived phytoestrogens have previously been shown to act as ligands for ERs and ERRalpha, and therefore the effects of these compounds were also studied on ERRgamma-mediated transcriptional regulation. This work demonstrated that ERRgamma-mediated transcriptional regulation was dependent on DNA-binding, dimerization and activation function-2. Heterodimerization with ERRalpha inhibited the transcriptional activity of ERRgamma. In addition to 4-OHT, another anti-estrogen, 4-hydroxytoremifene (4-OHtor), was identified as an inverse agonist of ERRgamma. Interestingly, ERRgamma activated transcription in the presence of 4-OHT and 4-OHtor on activator protein-1 binding sites. ERRgamma was found to interact with another orphan NR Nurr1 by repressing the ability of Nurr1 to activate transcription of the osteopontin gene. Transcriptional activity of ERRgamma was shown to be stimulated by the phytoestrogen equol. Structural model analysis and mutational experiments indicated that equol was able to bind to the ligand binding domain of ERRgamma. The growth inhibitory effect of ERRgamma on prostate cancer cells was found to be enhanced by equol. In summary, this study demonstrates that despite the absence of an endogenous physiological ligand, the activity of ERRgamma can be modulated in other ways such as dimerization with related receptors or by cross-talk with other transcription factors as well as by binding some synthetic or natural compounds.
Resumo:
According to outdated paradigms humic substances (HS) are considered to be refractory or inert that do not directly interact with aquatic organisms. However, they are taken up and induce biotransformation activities and may act as hormone-like substances. In the present study, we tested whether HS can interfere with endocrine regulation in the amphibian Xenopus laevis. In order to exclude contamination with phyto-hormones, which may occur in environmental isolates, the artificial HS 1500 was applied. The in vivo results showed that HS 1500 causes significant estrogenic effects on X. laevis during its larval development and results of semi-quantitative RT-PCR revealed a marked increase of the estrogenic biomarker estrogen receptor mRNA (ER-mRNA). Furthermore, preliminary RT-PCR results showed that the thyroid-stimulating hormone (TSH beta-mRNA) is enhanced after exposure to HS1500, indicating a weak adverse effect on T3/T4 availability. Hence, HS may have estrogenic and anti-thyroidal effects on aquatic animals, and therefore may influence the structure of aquatic communities and they may be considered environmental signaling chemicals. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Numerous environmental pollutants have been detected for estrogenic activity by interacting with the estrogen receptor, but little information is available about their interactions with the progesterone receptor. In this study, emission samples generated by fossil fuel combustion (FFC) and air particulate material (APM) collected from an urban location near a traffic line in a big city of China were evaluated to interact with the human progesterone receptor (hPR) signaling pathway by examining their ability to interact with the activity of hPR expressed in yeast. The results showed that the soot of a petroleum-fired vehicle possessed the most potent anti-progesteronic activity, that of coal-fired stove and diesel fired agrimotor emissions took the second place, and soot samples of coal-fired heating work and electric power station had lesser progesterone inhibition activity. The anti-progesteronic activity of APM was between that of soot from petroleum-fired vehicle and soot from coal-fired establishments and diesel fired agrimotor. Since there was no other large pollution source near the APM sampling sites, the endocrine disrupters were most likely from vehicle emissions, tire attrition and house heating sources. The correlation analysis showed that a strong relationship existed between estrogenic activity and anti-progesteronic activity in emissions of fossil fuel combustion. The discoveries that some environmental pollutants with estrogenic activity can also inhibit OR activity indicate that further studies are required to investigate potential mechanisms for the reported estrogenic activities of these pollutants. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Total air suspended particles (PM 100) collected from an urban location near a traffic line in Wuhan, China, were examined for estrogen using a recombinant yeast bioassay. Wuhan, located at the central part of China, is the fourth biggest city in China with 7 million populations. Today, Wuhan has developed into the biggest city and the largest traveling center of central China, becoming one of the important bases of industry, education and research. Wuhan is right at the confluent point of Yangzi River, the third longest river in the world, and its largest distributary Hanjiang, with mountains and more than 100 takes in downtown area. Therefore, by its unique landscape, Wuhan has formed clear four seasons with relatively long winter and summer and short spring and autumn. Foggy weather usually happen in early spring. The yeast line used in this assay stably expresses human estrogen receptor-alpha. Weak but clear estrogenic activities were detected in the organic phase of crude extracts of air particle materials (APM) in both sunny and foggy weather by 0.19-0.79 mug E2/gPM(100) which were statistically significantly elevated relative to the blank control responding from 20% to 50% of the maximum E2 response, and the estrogenic activity was much higher in foggy weather than in sunny weather. The estrogenic activities in the sub-fractions from chromatographic separation of APM sampled in foggy days were also determined. The results indicated that the responses of the fractions were obviously higher than the crude extracts. Since there is no other large pollution source nearby, the estrogenic material was most likely from vehicle emissions, house heating sources and oil fumes of house cooking. The GC/MS analysis of the PM100 collected under foggy weather showed that there were many phenol derivatives, oxy-PAHs and resin acids which have been reported as environmental estrogens. These results of the analysis of estrogenic potency in sunny and foggy weather in a subtropical city of China indicate that further studies are required to investigate the actual risks for the associated health and atmospheric system. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
La signalisation par l’estrogène a longtemps été considérée comme jouant un rôle critique dans le développement et la progression des cancers hormono-dépendants tel que le cancer du sein. Deux tiers des cancers du sein expriment le récepteur des estrogènes (ER) qui constitue un élément indiscutable dans cette pathologie. L’acquisition d’une résistance endocrinienne est cependant un obstacle majeur au traitement de cette forme de cancer. L’émergence de cancers hormono-indépendants peut est produite par l’activation de ER en absence d’estrogène, l’hypersensibilité du récepteur aux faibles concentrations plasmique d’estrogène ainsi que l’activation de ER par des modulateurs sélectifs. L’activité du ER est fortement influencée par l’environnement cellulaire tel que l’activation de voie de signalisation des facteurs de croissances, la disponibilité de protéines co-régulatrices et des séquences promotrices ciblées. Présentement, les études ont principalement considérées le rôle de ERα, cependant avec la découverte de ERβ, notre compréhension de la diversité des mécanismes potentiels impliquant des réponses ER-dépendantes s’est améliorée. L’activation des voies des kinases par les facteurs de croissance entraîne le développement d’un phénotype tumoral résistant aux traitements actuels. Nos connaissances des voies impliquées dans l’activation de ER sont restreintes. ERα est considéré comme le sous-type dominant et corrèle avec la plupart des facteurs de pronostic dans le cancer du sein. Le rôle de ERβ reste imprécis. Les résultats présentés dans cette thèse ont pour objectif de mieux comprendre l’implication de ERβ dans la prolifération cellulaire par l’étude du comportement de ERβ et ERα suite à l’activation des voies de signalisation par les facteurs de croissance. Nous démontrons que l’activation des récepteurs de surfaces de la famille ErbB, spécifiquement ErbB2/ErbB3, inhibe l’activité transcriptionnelle de ERβ, malgré la présence du coactivateur CBP, tout en activant ERα. De plus, l’inhibition de ERβ est attribuée à un résidu sérine (Ser-255) situé dans la région charnière, absente dans ERα. Des études supplémentaires de ErbB2/ErbB3 ont révélé qu’ils activent la voie PI3K/Akt ciblant à son tour la Ser-255. En effet, cette phosphorylation de ERβ par PI3K/Akt induit une augmentation de l’ubiquitination du récepteur qui promeut sa dégradation par le système ubiquitine-protéasome. Cette dégradation est spécifique pour ERβ. De façon intéressante, la dégradation par le protéasome requiert la présence du coactivateur CBP normalement requis pour l’activité transcriptionnelle des récepteurs nucléaires. Malgré le fait que l’activation de la voie PI3K/Akt corrèle avec une diminution de l’expression des gènes sous le contrôle de ERβ, on observe une augmentation de la prolifération des cellules cancéreuses. L’inhibition de la dégradation de ERβ réduit cette prolifération excessive causée par le traitement avec Hrgβ1, un ligand de ErbB3. Un nombre croissant d’évidences indique que les voies de signalisations des facteurs de croissance peuvent sélectivement réguler l’activité transcriptionnelle de sous-types de ER. De plus, le ratio ERα/ERβ dans les cancers du sein devient un outil de diagnostique populaire afin de déterminer la sévérité d’une tumeur. En conclusion, la caractérisation moléculaire du couplage entre la signalisation des facteurs de croissance et la fonction des ERs permettra le développement de nouveaux traitements afin de limiter l’apparition de cellules tumorales résistantes aux thérapies endocriniennes actuelles.
Resumo:
Les récepteurs nucléaires (RN) sont des facteurs de transcription ligand dépendants qui contrôlent une grande variété de processus biologiques de la physiologie humaine, ce qui a fait d'eux des cibles pharmacologiques privilégiées pour de nombreuses maladies. L'un de ces récepteurs, le récepteur de l’œstrogène alpha (ERα), peut activer la prolifération cellulaire dans certaines sections de l'épithélium mammaire tandis qu’un autre, le récepteur de l'acide rétinoïque alpha (RARα), peut provoquer un arrêt de la croissance et la différenciation cellulaire. La signalisation de ces deux récepteurs peut être altérée dans le cancer du sein, contribuant à la tumorigénèse mammaire. L’activité d’ERα peut être bloquée par les anti-oestrogènes (AE) pour inhiber la prolifération des cellules tumorales mammaires. Par contre, l’activation des voies de RARα avec des rétinoïdes dans un contexte clinique a rencontré peu de succès. Ceci pourrait résulter du manque de spécificité des ligands testés pour RARα et/ou de leur activité seulement dans certains sous-types de tumeurs mammaires. Puisque les récepteurs nucléaires forment des homo- et hétéro-dimères, nous avons cherché à développer de nouveaux essais pharmacologiques pour étudier l'activité de complexes dimériques spécifiques, leur dynamique d’association et la structure quaternaire des récepteurs des œstrogènes. Nous décrivons ici une nouvelle technique FRET, surnommée BRET avec renforcement de fluorescence par transferts combinés (BRETFect), qui permet de détecter la formation de complexes de récepteurs nucléaires ternaires. Le BRETFect peut suivre l'activation des hétérodimères ERα-ERβ et met en évidence un mécanisme allostérique d'activation que chaque récepteur exerce sur son partenaire de dimérisation. L'utilisation de BRETFect en combinaison avec le PCA nous a permis d'observer la formation de multimères d’ERα fonctionnels dans des cellules vivantes pour la première fois. La formation de multimères est favorisée par les AE induisant la dégradation du récepteur des oestrogènes, ce qui pourrait contribuer à leurs propriétés spécifiques. Ces essais de BRET apportent une nette amélioration par rapport aux tests de vecteurs rapporteur luciférase classique, en fournissant des informations spécifiques aux récepteurs en temps réel sans aucune interférence par d'autres processus tels que la transcription et de la traduction. L'utilisation de ces tests nous a permis de caractériser les propriétés de modulation de l’activité des récepteurs nucléaires d’une nouvelle classe de molécules hybrides qui peuvent à la fois lier ERa ou RAR et inhiber les HDACs, conduisant au développement de nouvelles molécules prometteuses bifonctionnelles telles que la molécule hybride RAR-agoniste/HDACi TTNN-HA.
Resumo:
Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13 bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2),which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-�) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ER� antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the cognate elements.
Resumo:
The GPR30, a former orphan GPCR, is a putative membrane estrogen receptor that can activate rapid signaling pathways such as extracellular regulated kinase (ERK) in a variety of cells and may contribute to estrogen's effects in the central nervous system. The distribution of GPR30 in the limbic system predicts a role for this receptor in the regulation of learning and memory and anxiety by estrogens. Though acute G-1 treatment is reported to be anxiogenic in ovariectomised female mice and in gonadally intact male mice, the effect of GPR30 activation is unknown in gonadectomised male mice. In this study, we show that an acute administration of G-1 to gonadectomised male mice, but not female mice, was anxiolytic on an elevated plus maze task, without affecting locomotor activity. In addition, though G-1 treatment did not regulate ERK, it was associated with increased estrogen receptor (ER)alpha phosphorylation in the ventral, but not dorsal, hippocampus of males. In the female, G-1 increased the ERK activation solely in the dorsal hippocampus, independent of state anxiety. This is the first study to report an anxiolytic effect of GPR30 activation in male mice, in a rapid time frame that is commensurate with non-genomic signaling by estrogen.
Resumo:
In ovariectomized rats, administration of estradiol, or selective estrogen receptor agonists that activate either the alpha or beta isoforms, have been shown to enhance spatial cognition on a variety of learning and memory tasks, including those that capitalize on the preference of rats to seek out novelty. Although the effects of the putative estrogen G-protein-coupled receptor 30 (GPR30) on hippocampus-based tasks have been reported using food-motivated tasks, the effects of activation of GPR30 receptors on tasks that depend on the preference of rats to seek out spatial novelty remain to be determined. Therefore, the aim of the current study was to determine if short-term treatment of ovariectomized rats with G-1, an agonist for GPR30, would mimic the effects on spatial recognition memory observed following short-term estradiol treatment. In Experiment 1, ovariectomized rats treated with a low dose (1mug) of estradiol 48h and 24h prior to the information trial of a Y-maze task exhibited a preference for the arm associated with the novel environment on the retention trial conducted 48h later. In Experiment 2, treatment of ovariectomized rats with G-1 (25mug) 48h and 24h prior to the information trial of a Y-maze task resulted in a greater preference for the arm associated with the novel environment on the retention trial. Collectively, the results indicated that short-term treatment of ovariectomized rats with a GPR30 agonist was sufficient to enhance spatial recognition memory, an effect that also occurred following short-term treatment with a low dose of estradiol.
Resumo:
Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T(3)) or antagonist (NH(3)). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, C-terminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T(3), but not NH(3), increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T(3) but not NH(3.) We present data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes. (Molecular Endocrinology 25: 15-31, 2011)
Resumo:
Understanding the molecular basis of the binding modes of natural and synthetic ligands to nuclear receptors is fundamental to our comprehension of the activation mechanism of this important class of hormone regulated transcription factors and to the development of new ligands. Thyroid hormone receptors (TR) are particularly important targets for pharmaceuticals development because TRs are associated with the regulation of metabolic rates, body weight, and circulating levels of cholesterol and triglycerides in humans. While several high-affinity ligands are known, structural information is only partially available. In this work we obtain structural models of several TR-ligand complexes with unknown structure by docking high affinity ligands to the receptors` ligand binding domain with subsequent relaxation by molecular dynamics simulations. The binding modes of these ligands are discussed providing novel insights into the development of TR ligands. The experimental binding free energies are reasonably well-reproduced from the proposed models using a simple linear interaction energy free-energy calculation scheme.
Resumo:
To shed more light on the molecular requirements for recognition of thyroid response elements (TRES) by thyroid receptors (TRs), we compared the specific aspects of DNA TRE recognition by different TR constructs. Using fluorescence anisotropy, we performed a detailed and hierarchical study of TR-TRE binding. This wits done by comparing the binding affinities of three different TR constructs for four different TRE DNA elements, including palindromic sequences and direct repeats (F2, PAL, DR-1, and DR-4) as well as their interactions with nonspecific DNA sequences. The effect of MgCl(2) on suppressing of nonselective DNA binding to TR was also investigated. Furthermore, we determined the dissociation constants of the hTR beta DBD (DNA binding domain) and hTR beta DBD-LBD (DNA binding and ligand binding domains) for specific TRES. We found that a minimum DNA recognition peptide derived from DBD (H1TR) is sufficient for recognition and interaction with TREs, whereas scrambled DNA sequences were unrecognized. Additionally, we determined that the TR DBD binds to F2, PAL, and DR-4 with high affinity and similar K(d) values. The TR DBD-LBD recognizes all the tested TRES but binds preferentially to F2, with even higher affinity. Finally, our results demonstrate the important role played by LBDs in modulating TR-DNA binding.
Resumo:
Human nerve growth factor-induced B (NGFI-B) is a member of the NR4A subfamily of orphan nuclear receptors (NRs). Lacking identified ligands, orphan NRs show particular co-regulator proteins binding properties, different from other NRs, and they might have a non-classical quaternary organization. A body of evidence suggests that NRs recognition of and binding to ligands, DNA, homo- and heterodimerization partners and co-regulator proteins involve significant conformational changes of the NR ligand-binding domains (LBDs). To shed light on largely unknown biophysical properties of NGFI-B, here we studied structural organization and unfolding properties of NGFI-B ligand (like)-binding domain induced by chemical perturbation. Our results show that NGFI-B LBD undergoes a two-state guanidine hydrochloride (GndHCl) induced denaturation, as judged by changes in the a-helical content of the protein monitored by circular dichroism spectroscopy (CD). In contrast, changes in the tertiary structure of NGFI-B LBD, reported by intrinsic fluorescence, reveal a clear intermediate state. Additionally, SAXS results demonstrate that the intermediate observed by intrinsic fluorescence is a partially folded homodimeric structure, which further unfolds without dissociation at higher GndHCl concentrations. This partially unfolded dimeric assembly of NGFI-B LBD might resemble an intermediate that this domain access momentarily in the native state upon interactions with functional partners. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
MCF-7 (estrogen receptor positive - ER(+)) and MDA-MB-231 (estrogen receptor negative - ER(-)) are human breast cancer cell lines which express functional thyroid hormone receptors (c-erb A alpha 1 and c-erb beta 1) as indicated by stimulation of mitochondrial alpha-glycerophosphate dehydrogenase. In MCF-7, mimicking E(2), T-3 stimulated growth in a dose-dependent (10(10) M-10(-8) M) manner, induced the expression of progesterone receptor and growth factor TGF alpha mRNAs and inhibited that of TGF beta mRNA; T-3 also increased progesterone binding and LDH5 isozyme activities. None of these effects were observed in (ER(-)) MDA-MB-231 cells. 10(-6) M tamoxifen (TAM) reverted growth stimulation, suppressed progesterone receptor and TGF alpha mRNA induction and restored TGF beta mRNA to control levels in T-3-treated MCF-7 cells. That T-3 is acting in MCF-7 cells via its binding to ER is suggested by the immunoprecipitation of pre-bound I-125-T-3 from MCF-7 nuclear extracts by an ER-specific monoclonal antibody and by the displacement of H-3-estradiol binding to ER by radioinert T-3. Copyright (C) 1996 Elsevier B.V. Ltd.
Resumo:
Expression of estrogen (ER) and progesterone (PR) receptors has traditionally been associated with hormone-responsive organs, such as breast, ovary, and endometrium, and carcinomas arising therefrom. More recently, examples of ''unexpected'' ER or PR expression have been reported, particularly in tumors of endocrine tissues, such as thyroid and pancreatic islet cells. We tested the hypothesis that neuroendocrine tumors of various primary and metastatic sites might also express ER or PR or both by performing a retrospective immunohistochemical study in a series of 59 formalin- or mechacarn-fixed neuroendocrine carcinomas of various sites, including lung, skin, gastrointestinal and female genital tracts, and including carcinoid and atypical carcinoid tumors, small cell carcinomas, and Merkel cell carcinomas. We employed the anti-ER monoclonal antibody 1D5 and the anti-PR monoclonal antibody PgR1A6 using standard immunohistochemical techniques after microwave-based heat-induced epitope retrieval. Two of 28 carcinoid tumors demonstrated ER positivity; six of 30 cases were positive for progesterone receptor only. In addition, PR expression was found in one of two cases of atypical carcinoid, in five of 25 cases of small cell carcinoma, and in one of two cases of Merkel cell carcinoma. None of the atypical carcinoids, small cell carcinomas, or Merkel cell carcinomas were ER positive. In most cases, the fraction of tumor cell nuclei that were positive was <50%. These studies add the spectrum of neuroendocrine tumors that can express these hormone receptors. Similar to the pattern previously described in the subsets of meningiomas and islet cell tumors, PR but not ER is detectable in most cases. These results underscore the caution that should be exercised in determining tissue origin of metastatic carcinomas based only on detection of hormone receptors by immunohistochemistry.