990 resultados para Estimation errors
Resumo:
When many protein sequences are available for estimating the time of divergence between two species, it is customary to estimate the time for each protein separately and then use the average for all proteins as the final estimate. However, it can be shown that this estimate generally has an upward bias, and that an unbiased estimate is obtained by using distances based on concatenated sequences. We have shown that two concatenation-based distances, i.e., average gamma distance weighted with sequence length (d2) and multiprotein gamma distance (d3), generally give more satisfactory results than other concatenation-based distances. Using these two distance measures for 104 protein sequences, we estimated the time of divergence between mice and rats to be approximately 33 million years ago. Similarly, the time of divergence between humans and rodents was estimated to be approximately 96 million years ago. We also investigated the dependency of time estimates on statistical methods and various assumptions made by using sequence data from eubacteria, protists, plants, fungi, and animals. Our best estimates of the times of divergence between eubacteria and eukaryotes, between protists and other eukaryotes, and between plants, fungi, and animals were 3, 1.7, and 1.3 billion years ago, respectively. However, estimates of ancient divergence times are subject to a substantial amount of error caused by uncertainty of the molecular clock, horizontal gene transfer, errors in sequence alignments, etc.
Resumo:
Background: Refractive error is defined as the inability of the eye to bring parallel rays of light into focus on the retina, resulting in nearsightedness (myopia), farsightedness (Hyperopia) or astigmatism. Uncorrected refractive error in children is associated with increased morbidity and reduced educational opportunities. Vision screening (VS) is a method for identifying children with visual impairment or eye conditions likely to lead to visual impairment. Objective: To analyze the utility of vision screening conducted by teachers and to contribute to a better estimation of the prevalence of childhood refractive errors in Apurimac, Peru. Design: A pilot vision screening program in preschool (Group I) and elementary school children (Group II) was conducted with the participation of 26 trained teachers. Children whose visual acuity was<6/9 [20/30] (Group I) and≤6/9 (Group II) in one or both eyes, measured with the Snellen Tumbling E chart at 6 m, were referred for a comprehensive eye exam. Specificity and positive predictive value to detect refractive error were calculated against clinical examination. Program assessment with participants was conducted to evaluate outcomes and procedures. Results: A total sample of 364 children aged 3–11 were screened; 45 children were examined at Centro Oftalmológico Monseñor Enrique Pelach (COMEP) Eye Hospital. Prevalence of refractive error was 6.2% (Group I) and 6.9% (Group II); specificity of teacher vision screening was 95.8% and 93.0%, while positive predictive value was 59.1% and 47.8% for each group, respectively. Aspects highlighted to improve the program included extending training, increasing parental involvement, and helping referred children to attend the hospital. Conclusion: Prevalence of refractive error in children is significant in the region. Vision screening performed by trained teachers is a valid intervention for early detection of refractive error, including screening of preschool children. Program sustainability and improvements in education and quality of life resulting from childhood vision screening require further research.
Resumo:
Purpose: To calculate theoretically the errors in the estimation of corneal power when using the keratometric index (nk) in eyes that underwent laser refractive surgery for the correction of myopia and to define and validate clinically an algorithm for minimizing such errors. Methods: Differences between corneal power estimation by using the classical nk and by using the Gaussian equation in eyes that underwent laser myopic refractive surgery were simulated and evaluated theoretically. Additionally, an adjusted keratometric index (nkadj) model dependent on r1c was developed for minimizing these differences. The model was validated clinically by retrospectively using the data from 32 myopic eyes [range, −1.00 to −6.00 diopters (D)] that had undergone laser in situ keratomileusis using a solid-state laser platform. The agreement between Gaussian (PGaussc) and adjusted keratometric (Pkadj) corneal powers in such eyes was evaluated. Results: It was found that overestimations of corneal power up to 3.5 D were possible for nk = 1.3375 according to our simulations. The nk value to avoid the keratometric error ranged between 1.2984 and 1.3297. The following nkadj models were obtained: nkadj= −0.0064286r1c + 1.37688 (Gullstrand eye model) and nkadj = −0.0063804r1c + 1.37806 (Le Grand). The mean difference between Pkadj and PGaussc was 0.00 D, with limits of agreement of −0.45 and +0.46 D. This difference correlated significantly with the posterior corneal radius (r = −0.94, P < 0.01). Conclusions: The use of a single nk for estimating the corneal power in eyes that underwent a laser myopic refractive surgery can lead to significant errors. These errors can be minimized by using a variable nk dependent on r1c.
Resumo:
Purpose: The aim of this study was to analyze theoretically the errors in the central corneal power calculation in eyes with keratoconus when a keratometric index (nk) is used and to clinically confirm the errors induced by this approach. Methods: Differences (DPc) between central corneal power estimation with the classical nk (Pk) and with the Gaussian equation (PGauss c ) in eyes with keratoconus were simulated and evaluated theoretically, considering the potential range of variation of the central radius of curvature of the anterior (r1c) and posterior (r2c) corneal surfaces. Further, these differences were also studied in a clinical sample including 44 keratoconic eyes (27 patients, age range: 14–73 years). The clinical agreement between Pk and PGauss c (true net power) obtained with a Scheimpflug photography–based topographer was evaluated in such eyes. Results: For nk = 1.3375, an overestimation was observed in most cases in the theoretical simulations, with DPc ranging from an underestimation of 20.1 diopters (D) (r1c = 7.9 mm and r2c = 8.2 mm) to an overestimation of 4.3 D (r1c = 4.7 mm and r2c = 3.1 mm). Clinically, Pk always overestimated the PGauss c given by the topography system in a range between 0.5 and 2.5 D (P , 0.01). The mean clinical DPc was 1.48 D, with limits of agreement of 0.71 and 2.25 D. A very strong statistically significant correlation was found between DPc and r2c (r = 20.93, P , 0.01). Conclusions: The use of a single value for nk for the calculation of corneal power is imprecise in keratoconus and can lead to significant clinical errors.
Resumo:
Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.
Resumo:
Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.
Resumo:
2000 Mathematics Subject Classification: 62J05, 62J10, 62F35, 62H12, 62P30.
Resumo:
Annual average daily traffic (AADT) is important information for many transportation planning, design, operation, and maintenance activities, as well as for the allocation of highway funds. Many studies have attempted AADT estimation using factor approach, regression analysis, time series, and artificial neural networks. However, these methods are unable to account for spatially variable influence of independent variables on the dependent variable even though it is well known that to many transportation problems, including AADT estimation, spatial context is important. ^ In this study, applications of geographically weighted regression (GWR) methods to estimating AADT were investigated. The GWR based methods considered the influence of correlations among the variables over space and the spatially non-stationarity of the variables. A GWR model allows different relationships between the dependent and independent variables to exist at different points in space. In other words, model parameters vary from location to location and the locally linear regression parameters at a point are affected more by observations near that point than observations further away. ^ The study area was Broward County, Florida. Broward County lies on the Atlantic coast between Palm Beach and Miami-Dade counties. In this study, a total of 67 variables were considered as potential AADT predictors, and six variables (lanes, speed, regional accessibility, direct access, density of roadway length, and density of seasonal household) were selected to develop the models. ^ To investigate the predictive powers of various AADT predictors over the space, the statistics including local r-square, local parameter estimates, and local errors were examined and mapped. The local variations in relationships among parameters were investigated, measured, and mapped to assess the usefulness of GWR methods. ^ The results indicated that the GWR models were able to better explain the variation in the data and to predict AADT with smaller errors than the ordinary linear regression models for the same dataset. Additionally, GWR was able to model the spatial non-stationarity in the data, i.e., the spatially varying relationship between AADT and predictors, which cannot be modeled in ordinary linear regression. ^
Resumo:
Fixed-step-size (FSS) and Bayesian staircases are widely used methods to estimate sensory thresholds in 2AFC tasks, although a direct comparison of both types of procedure under identical conditions has not previously been reported. A simulation study and an empirical test were conducted to compare the performance of optimized Bayesian staircases with that of four optimized variants of FSS staircase differing as to up-down rule. The ultimate goal was to determine whether FSS or Bayesian staircases are the best choice in experimental psychophysics. The comparison considered the properties of the estimates (i.e. bias and standard errors) in relation to their cost (i.e. the number of trials to completion). The simulation study showed that mean estimates of Bayesian and FSS staircases are dependable when sufficient trials are given and that, in both cases, the standard deviation (SD) of the estimates decreases with number of trials, although the SD of Bayesian estimates is always lower than that of FSS estimates (and thus, Bayesian staircases are more efficient). The empirical test did not support these conclusions, as (1) neither procedure rendered estimates converging on some value, (2) standard deviations did not follow the expected pattern of decrease with number of trials, and (3) both procedures appeared to be equally efficient. Potential factors explaining the discrepancies between simulation and empirical results are commented upon and, all things considered, a sensible recommendation is for psychophysicists to run no fewer than 18 and no more than 30 reversals of an FSS staircase implementing the 1-up/3-down rule.
Resumo:
Variants of adaptive Bayesian procedures for estimating the 5% point on a psychometric function were studied by simulation. Bias and standard error were the criteria to evaluate performance. The results indicated a superiority of (a) uniform priors, (b) model likelihood functions that are odd symmetric about threshold and that have parameter values larger than their counterparts in the psychometric function, (c) stimulus placement at the prior mean, and (d) estimates defined as the posterior mean. Unbiasedness arises in only 10 trials, and 20 trials ensure constant standard errors. The standard error of the estimates equals 0.617 times the inverse of the square root of the number of trials. Other variants yielded bias and larger standard errors.
Resumo:
Date of Acceptance: 02/03/2015
Resumo:
Date of Acceptance: 02/03/2015
Resumo:
In Germany the upscaling algorithm is currently the standard approach for evaluating the PV power produced in a region. This method involves spatially interpolating the normalized power of a set of reference PV plants to estimate the power production by another set of unknown plants. As little information on the performances of this method could be found in the literature, the first goal of this thesis is to conduct an analysis of the uncertainty associated to this method. It was found that this method can lead to large errors when the set of reference plants has different characteristics or weather conditions than the set of unknown plants and when the set of reference plants is small. Based on these preliminary findings, an alternative method is proposed for calculating the aggregate power production of a set of PV plants. A probabilistic approach has been chosen by which a power production is calculated at each PV plant from corresponding weather data. The probabilistic approach consists of evaluating the power for each frequently occurring value of the parameters and estimating the most probable value by averaging these power values weighted by their frequency of occurrence. Most frequent parameter sets (e.g. module azimuth and tilt angle) and their frequency of occurrence have been assessed on the basis of a statistical analysis of parameters of approx. 35 000 PV plants. It has been found that the plant parameters are statistically dependent on the size and location of the PV plants. Accordingly, separate statistical values have been assessed for 14 classes of nominal capacity and 95 regions in Germany (two-digit zip-code areas). The performances of the upscaling and probabilistic approaches have been compared on the basis of 15 min power measurements from 715 PV plants provided by the German distribution system operator LEW Verteilnetz. It was found that the error of the probabilistic method is smaller than that of the upscaling method when the number of reference plants is sufficiently large (>100 reference plants in the case study considered in this chapter). When the number of reference plants is limited (<50 reference plants for the considered case study), it was found that the proposed approach provides a noticeable gain in accuracy with respect to the upscaling method.
Resumo:
Static state estimators currently in use in power systems are prone to masking by multiple bad data. This is mainly because the power system regression model contains many leverage points; typically they have a cluster pattern. As reported recently in the statistical literature, only high breakdown point estimators are robust enough to cope with gross errors corrupting such a model. This paper deals with one such estimator, the least median of squares estimator, developed by Rousseeuw in 1984. The robustness of this method is assessed while applying it to power systems. Resampling methods are developed, and simulation results for IEEE test systems discussed. © 1991 IEEE.
Resumo:
Due to increasing integration density and operating frequency of today's high performance processors, the temperature of a typical chip can easily exceed 100 degrees Celsius. However, the runtime thermal state of a chip is very hard to predict and manage due to the random nature in computing workloads, as well as the process, voltage and ambient temperature variability (together called PVT variability). The uneven nature (both in time and space) of the heat dissipation of the chip could lead to severe reliability issues and error-prone chip behavior (e.g. timing errors). Many dynamic power/thermal management techniques have been proposed to address this issue such as dynamic voltage and frequency scaling (DVFS), clock gating and etc. However, most of such techniques require accurate knowledge of the runtime thermal state of the chip to make efficient and effective control decisions. In this work we address the problem of tracking and managing the temperature of microprocessors which include the following sub-problems: (1) how to design an efficient sensor-based thermal tracking system on a given design that could provide accurate real-time temperature feedback; (2) what statistical techniques could be used to estimate the full-chip thermal profile based on very limited (and possibly noise-corrupted) sensor observations; (3) how do we adapt to changes in the underlying system's behavior, since such changes could impact the accuracy of our thermal estimation. The thermal tracking methodology proposed in this work is enabled by on-chip sensors which are already implemented in many modern processors. We first investigate the underlying relationship between heat distribution and power consumption, then we introduce an accurate thermal model for the chip system. Based on this model, we characterize the temperature correlation that exists among different chip modules and explore statistical approaches (such as those based on Kalman filter) that could utilize such correlation to estimate the accurate chip-level thermal profiles in real time. Such estimation is performed based on limited sensor information because sensors are usually resource constrained and noise-corrupted. We also took a further step to extend the standard Kalman filter approach to account for (1) nonlinear effects such as leakage-temperature interdependency and (2) varying statistical characteristics in the underlying system model. The proposed thermal tracking infrastructure and estimation algorithms could consistently generate accurate thermal estimates even when the system is switching among workloads that have very distinct characteristics. Through experiments, our approaches have demonstrated promising results with much higher accuracy compared to existing approaches. Such results can be used to ensure thermal reliability and improve the effectiveness of dynamic thermal management techniques.