948 resultados para Electrostatic Potential Dipole Legendre Induced Dyad Polarization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Venom phospholipase A(2)s (PLA(2)s) display a wide spectrum of pharmacological activities and, based on the wealth of biochemical and structural data currently available for PLA(2)S, mechanistic models can now be inferred to account for some of these activities. A structural model is presented for the role played by the distribution of surface electrostatic potential in the ability of myotoxic D49/K49 PLA(2)s to disrupt multilamellar vesicles containing negatively charged natural and non-hydrolyzable phospholipids. Structural evidence is provided for the ability of K49 PLA(2)s to bind phospholipid analogues and for the existence of catalytic activity in K49 PLA(2)s. The importance of the existence of catalytic activity of D49 and K49 PLA(2)s in myotoxicity is presented. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vesicles prepared with synthetic amphiphiles (dioctadecyldimethylammonium bromide and chloride, dihexadecyl phosphate and its sodium salt) were obtained by sonication, ethanol injections, and chloroform injections. The hydrodynamic diameter of vesicles (Dh), estimated from the diffusivity measured by quasielastic light scattering, ranged from 230 to 3000 Å. The electrophoretic mobility (Um) was measured by free-flow electrophoresis. The zeta potential (ζ) and the degree of counterion dissociation (α) of the vesicles were calculated from Um and conductivity data, α decreased with increasing Dh of the vesicles, probably due to the decreasing headgroup area and the increasing counterion association needed to relax the surface electrostatic potential. The electrophoretic mobility was also calculated (Uc) according to an impenetrable, nonconducting sphere model with a spherically symmetric charge distribution approximation. Within the limits of the experimental error(s) of the (different) methods employed and the assumptions made in the calculations, the fact that the Um/Uc ratio ranged from 1.3 to 7.5 was considered to be a good agreement between the calculated and the experimental values. © 1990 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with a model to interpret pH measurements of solutions of weak rodlike polyacids, in the absence of added salts or titrating base. The polyacid is modeled as a series of point charges discretely distributod in a straight line with a distance of closest approach for the protons and an average distance between dissociable monomers, projected in the polymer chain axis. Aside from these two geometrical parameters, the dissociation constant for the isolated monomer that describes the proton dissociated monomer interaction forms the basis of the model. The assumption of cylindrical symmetry and the adoption of the cell model lead to a form written in terms of elementary functions for the mean electrostatic potential. Values of pH (related to the proton concentration in a region beyond the influence of the polyacid) as a function of polymer concentration are displayed graphically for some values of the geometrical parameters and of the dissociation, constant. Theoretical predictions of pH values as a function of polymeric concentration are compared with measured values for poly-L-glutamic and polygalacturonic acids, and a good agreement is found. Theoretical values for the dissociation degree in terms of polymeric concentration are shown for the two experimentally investigated systems. These values are in a range appreciably smaller than what is usually studied as a result of titration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work was to evaluate the corrosion of commercially pure (CP) titanium and Ti6Al4V in vitro at different F- concentrations regularly found in the oral cavity by using different electrochemical tests and surface analysis techniques. electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) and potentio-dynamic polarization tests were associated to advanced characterization techniques such as SEM, EDS, AFM, ICP-MS and XPS. OCP tests revealed a higher reactivity of both CP titanium and Ti6Al4V at 12,300 ppm F- concentration than that recorded at 227 ppm F-. Also, a significant decrease of the corrosion resistance of both materials was noticed by EIS in fluoride solutions. Material loss caused by corrosion was noticed on titanium surfaces by SEM and AFM in the presence of high F- concentration. CP titanium degraded by pitting corrosion while Ti6Al4V suffered from general corrosion showing micro-cracks on surface. Furthermore, a high release of metallic ions from the test samples after immersion at high F concentrations was detected by ICP-MS, that can be potentially toxic to oral tissues. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity. Results: Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-gamma, inducing proinflammatory type-1 macrophages (M1), or IL-10, inducing anti-inflammatory type-2 cells (M2). Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR) and arginase-1 (Arg-1). Treatment of macrophages with IFN-gamma and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS) expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate arginine, leading to lower levels of NO production. Conclusions: The data obtained demonstrated that the strain, characterized by increased growth in macrophages, down- modulated classical macrophage activation, through induction of an atypical mixed M1/M2 phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

M-ficolin specificity for sialylated ligands prompted us to investigate its interactions with the main membrane sialoprotein of human neutrophils, CD43. rM-ficolin bound CD43 and prevented the access of anti-CD43 mAb. Moreover, rM-ficolin reacted exclusively with CD43 on Western blots of neutrophil lysate. We confirmed that M-ficolin is secreted by fMLP-activated neutrophils, and this endogenous M-ficolin also binds to CD43 and competes with anti-CD43 mAb. Anti-CD43 antibody cross-linking or fMLP resulted in M-ficolin and CD43 colocalization on polarized neutrophils. The binding of rM-ficolin to resting neutrophils induced cell polarization, adhesion, and homotypic aggregation as anti-CD43 mAb. The M-ficolin Y271F mutant, unable to bind sialic acid, neither reacted with neutrophils nor modulated their functions. Finally, rM-ficolin activated the lectin complement pathway on neutrophils. These results emphasize a new function of M-ficolin, different from ficolin pathogen recognition, i.e., a participation to neutrophil adhesion potentially important in early inflammation, as nanomolar agonist concentrations are sufficient to mobilize M-ficolin to the neutrophil surface. This multivalent lectin could then endow the antiadhesive CD43, essentially designed to prevent leukocyte aggregation in the blood flow, with new adhesive properties and explain, at least in part, dual-adhesive/antiadhesive roles of CD43 in neutrophil recruitment. J. Leukoc. Biol. 91: 469-474; 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PPAR delta is a nuclear receptor that, when activated, regulates the metabolism of carbohydrates and lipids and is related to metabolic syndrome and type 2 diabetes. To understand the main interactions between ligands and PPAR delta, we have constructed 2D and 3D QSAR models and compared them with HOMO, LUMO and electrostatic potential maps of the compounds studied, as well as docking results. All QSAR models showed good statistical parameters and prediction outcomes. The QSAR models were used to predict the biological activity of an external test set, and the predicted values are in good agreement with the experimental results. Furthermore, we employed all maps to evaluate the possible interactions between the ligands and PPAR delta. These predictive QSAR models, along with the HOMO, LUMO and MEP maps, can provide insights into the structural and chemical properties that are needed in the design of new PPAR delta ligands that have improved biological activity and can be employed to treat metabolic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH- + CH3ONO2 reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (S(N)2@C) or the nitrogen center (S(N)2@N) as well as a proton abstraction followed by dissociation (E(CO)2) pathway. Direct dynamics simulations yield an S(N)2:E(CO)2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO2 group that scatters the incoming OH-. In addition to these dynamical effects, the nonstatistical behavior of these reactions is attributed to the absence of equilibrated reactant complexes and to the large number of recrossings, which might be present in several ion-molecule gas-phase reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gedunin compound (C28H34O6) is a natural product extracted from Trichilia pallida that has shown a wide activity. The crystallographic structure shows two conformers in the asymmetric unit, which differ in a rotation of the furan group. To understand this molecular arrangement, the density functional calculations. Molecular Electrostatic Potential (MEP) and thermodynamic function calculation have been performed at the B3LYP/6-311++g(d,p) level. Both conformers were optimized and the agreement with the experimental structure was very good, making possible further theoretical analysis of the structure. The inter-conversion between two conformers depends on the energy barrier. This process is studied in the vacuum and shows two transition states with a low energetic barrier for a potential energy curve scanning rigid around furan group: 4.37 kcal/mol and 16.52 kcal/mol. As the first transition state has a notably lower energetic barrier, the preferred inter-conversion pathway between the conformers involves the first rather than the second transition state. Understanding this transition state in detail led us to perform its optimization, showing an energetic barrier around 3.66 kcal/mol. The negative free energy and low enthalpy confirm that the process is spontaneous and exothermic. The results show that this requirement makes the existence of the two conformers in the asymmetric unit possible. The structure of molecules in the asymmetric unit is better understood when the MEP is used on the interaction between molecules. For Gedunin, both molecules have shown MEP with well-defined regions, and this behavior contributes to the observed link between molecules and for the negative regions complementing positive regions of another molecule. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion channels are pore-forming proteins that regulate the flow of ions across biological cell membranes. Ion channels are fundamental in generating and regulating the electrical activity of cells in the nervous system and the contraction of muscolar cells. Solid-state nanopores are nanometer-scale pores located in electrically insulating membranes. They can be adopted as detectors of specific molecules in electrolytic solutions. Permeation of ions from one electrolytic solution to another, through a protein channel or a synthetic pore is a process of considerable importance and realistic analysis of the main dependencies of ion current on the geometrical and compositional characteristics of these structures are highly required. The project described by this thesis is an effort to improve the understanding of ion channels by devising methods for computer simulation that can predict channel conductance from channel structure. This project describes theory, algorithms and implementation techniques used to develop a novel 3-D numerical simulator of ion channels and synthetic nanopores based on the Brownian Dynamics technique. This numerical simulator could represent a valid tool for the study of protein ion channel and synthetic nanopores, allowing to investigate at the atomic-level the complex electrostatic interactions that determine channel conductance and ion selectivity. Moreover it will provide insights on how parameters like temperature, applied voltage, and pore shape could influence ion translocation dynamics. Furthermore it will help making predictions of conductance of given channel structures and it will add information like electrostatic potential or ionic concentrations throughout the simulation domain helping the understanding of ion flow through membrane pores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis I present theoretical and experimental results concern- ing the operation and properties of a new kind of Penning trap, the planar trap. It consists of circular electrodes printed on an isolating surface, with an homogeneous magnetic field pointing perpendicular to that surface. The motivation of such geometry is to be found in the construction of an array of planar traps for quantum informa- tional purposes. The open access to radiation of this geometry, and the long coherence times expected for Penning traps, make the planar trap a good candidate for quantum computation. Several proposals for quantum 2-qubit interactions are studied and estimates for their rates are given. An expression for the electrostatic potential is presented, and its fea- tures exposed. A detailed study of the anharmonicity of the potential is given theoretically and is later demonstrated by experiment and numerical simulations, showing good agreement. Size scalability of this trap has been studied by replacing the original planar trap by a trap twice smaller in the experimental setup. This substitution shows no scale effect apart from those expected for the scaling of the parameters of the trap. A smaller lifetime for trapped electrons is seen for this smaller trap, but is clearly matched to a bigger misalignment of the trap’s surface and the magnetic field, due to its more difficult hand manipulation. I also give a hint that this trap may be of help in studying non-linear dynamics for a sextupolarly perturbed Penning trap.