858 resultados para Electrical engineering|Computer science
Resumo:
Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding and performance of computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: (1) identifying sources of computer science students’ difficulties with proofs by induction, and (2) developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.
Resumo:
Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding of and performance with computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: 1. identifying sources of computer science students’ difficulties with proofs by induction, and 2. developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.
Resumo:
This article presents an interdisciplinary experience that brings together two areas of computer science; didactics and philosophy. As such, the article introduces a relatively unexplored area of research, not only in Uruguay but in the whole Latin American region. The reflection on the ontological status of computer science, its epistemic and educational problems, as well as their relationship with technology, allows us to elaborate a critical analysis of the discipline and a social perception of it as a basic science.
Resumo:
There is a widespread perception among staff in Computer Science that plagiarism is a major problem particularly in the form of collusion in programming exercises. While departments often make use of electronic detection measures, the time consumed prosecuting plagiarism offences remains a problem. As a result departments continue to seek ways to reduce the amount of plagiarism and collusion that occurs. This paper reports the findings of a questionnaire based study which attempted to assess the students' attitudes to the issues involved in the hope that such an understanding might result in practical measures for minimizing the problem. The study revealed that while students did understand the definition of plagiarism in its most extreme cases they were often confused about less clear-cut situations. Changes in the previous experience of incoming students meeting modules originally designed on the assumption that students already had some programming background and were equipped for self-directed study would also appear to be a contributory factor in the extent of collusion in programming exercises.
Resumo:
The thesis aims to exploit properties of thin films for applications such as spintronics, UV detection and gas sensing. Nanoscale thin films devices have myriad advantages and compatibility with Si-based integrated circuits processes. Two distinct classes of material systems are investigated, namely ferromagnetic thin films and semiconductor oxides. To aid the designing of devices, the surface properties of the thin films were investigated by using electron and photon characterization techniques including Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), grazing incidence X-ray diffraction (GIXRD), and energy-dispersive X-ray spectroscopy (EDS). These are complemented by nanometer resolved local proximal probes such as atomic force microscopy (AFM), magnetic force microscopy (MFM), electric force microscopy (EFM), and scanning tunneling microscopy to elucidate the interplay between stoichiometry, morphology, chemical states, crystallization, magnetism, optical transparency, and electronic properties. Specifically, I studied the effect of annealing on the surface stoichiometry of the CoFeB/Cu system by in-situ AES and discovered that magnetic nanoparticles with controllable areal density can be produced. This is a good alternative for producing nanoparticles using a maskless process. Additionally, I studied the behavior of magnetic domain walls of the low coercivity alloy CoFeB patterned nanowires. MFM measurement with the in-plane magnetic field showed that, compared to their permalloy counterparts, CoFeB nanowires require a much smaller magnetization switching field , making them promising for low-power-consumption domain wall motion based devices. With oxides, I studied CuO nanoparticles on SnO2 based UV photodetectors (PDs), and discovered that they promote the responsivity by facilitating charge transfer with the formed nanoheterojunctions. I also demonstrated UV PDs with spectrally tunable photoresponse with the bandgap engineered ZnMgO. The bandgap of the alloyed ZnMgO thin films was tailored by varying the Mg contents and AES was demonstrated as a surface scientific approach to assess the alloying of ZnMgO. With gas sensors, I discovered the rf-sputtered anatase-TiO2 thin films for a selective and sensitive NO2 detection at room temperature, under UV illumination. The implementation of UV enhances the responsivity, response and recovery rate of the TiO2 sensor towards NO2 significantly. Evident from the high resolution XPS and AFM studies, the surface contamination and morphology of the thin films degrade the gas sensing response. I also demonstrated that surface additive metal nanoparticles on thin films can improve the response and the selectivity of oxide based sensors. I employed nanometer-scale scanning probe microscopy to study a novel gas senor scheme consisting of gallium nitride (GaN) nanowires with functionalizing oxides layer. The results suggested that AFM together with EFM is capable of discriminating low-conductive materials at the nanoscale, providing a nondestructive method to quantitatively relate sensing response to the surface morphology.
Resumo:
The primary goals of this study are to: embed sustainable concepts of energy consumption into certain part of existing Computer Science curriculum for English schools; investigate how to motivate 7-to-11 years old kids to learn these concepts; promote responsive ICT (Information and Communications Technology) use by these kids in their daily life; raise their awareness of today’s ecological challenges. Sustainability-related ICT lessons developed aim to provoke computational thinking and creativity to foster understanding of environmental impact of ICT and positive environmental impact of small changes in user energy consumption behaviour. The importance of including sustainability into the Computer Science curriculum is due to the fact that ICT is both a solution and one of the causes of current world ecological problems. This research follows Agile software development methodology. In order to achieve the aforementioned goals, sustainability requirements, curriculum requirements and technical requirements are firstly analysed. Secondly, the web-based user interface is designed. In parallel, a set of three online lessons (video, slideshow and game) is created for the website GreenICTKids.com taking into account several green design patterns. Finally, the evaluation phase involves the collection of adults’ and kids’ feedback on the following: user interface; contents; user interaction; impacts on the kids’ sustainability awareness and on the kids’ behaviour with technologies. In conclusion, a list of research outcomes is as follows: 92% of the adults learnt more about energy consumption; 80% of the kids are motivated to learn about energy consumption and found the website easy to use; 100% of the kids understood the contents and liked website’s visual aspect; 100% of the kids will try to apply in their daily life what they learnt through the online lessons.
Resumo:
We describe a one-time signature scheme based on the hardness of the syndrome decoding problem, and prove it secure in the random oracle model. Our proposal can be instantiated on general linear error correcting codes, rather than restricted families like alternant codes for which a decoding trapdoor is known to exist. (C) 2010 Elsevier Inc. All rights reserved,
Resumo:
For the last decade, elliptic curve cryptography has gained increasing interest in industry and in the academic community. This is especially due to the high level of security it provides with relatively small keys and to its ability to create very efficient and multifunctional cryptographic schemes by means of bilinear pairings. Pairings require pairing-friendly elliptic curves and among the possible choices, Barreto-Naehrig (BN) curves arguably constitute one of the most versatile families. In this paper, we further expand the potential of the BN curve family. We describe BN curves that are not only computationally very simple to generate, but also specially suitable for efficient implementation on a very broad range of scenarios. We also present implementation results of the optimal ate pairing using such a curve defined over a 254-bit prime field. (C) 2001 Elsevier Inc. All rights reserved.
Resumo:
Scheduling parallel and distributed applications efficiently onto grid environments is a difficult task and a great variety of scheduling heuristics has been developed aiming to address this issue. A successful grid resource allocation depends, among other things, on the quality of the available information about software artifacts and grid resources. In this article, we propose a semantic approach to integrate selection of equivalent resources and selection of equivalent software artifacts to improve the scheduling of resources suitable for a given set of application execution requirements. We also describe a prototype implementation of our approach based on the Integrade grid middleware and experimental results that illustrate its benefits. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
This work presents a method for predicting resource availability in opportunistic grids by means of use pattern analysis (UPA), a technique based on non-supervised learning methods. This prediction method is based on the assumption of the existence of several classes of computational resource use patterns, which can be used to predict the resource availability. Trace-driven simulations validate this basic assumptions, which also provide the parameter settings for the accurate learning of resource use patterns. Experiments made with an implementation of the UPA method show the feasibility of its use in the scheduling of grid tasks with very little overhead. The experiments also demonstrate the method`s superiority over other predictive and non-predictive methods. An adaptative prediction method is suggested to deal with the lack of training data at initialization. Further adaptative behaviour is motivated by experiments which show that, in some special environments, reliable resource use patterns may not always be detected. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
This paper presents the multi-threading and internet message communication capabilities of Qu-Prolog. Message addresses are symbolic and the communications package provides high-level support that completely hides details of IP addresses and port numbers as well as the underlying TCP/IP transport layer. The combination of the multi-threads and the high level inter-thread message communications provide simple, powerful support for implementing internet distributed intelligent applications.
Resumo:
Existing refinement calculi provide frameworks for the stepwise development of imperative programs from specifications. This paper presents a refinement calculus for deriving logic programs. The calculus contains a wide-spectrum logic programming language, including executable constructs such as sequential conjunction, disjunction, and existential quantification, as well as specification constructs such as general predicates, assumptions and universal quantification. A declarative semantics is defined for this wide-spectrum language based on executions. Executions are partial functions from states to states, where a state is represented as a set of bindings. The semantics is used to define the meaning of programs and specifications, including parameters and recursion. To complete the calculus, a notion of correctness-preserving refinement over programs in the wide-spectrum language is defined and refinement laws for developing programs are introduced. The refinement calculus is illustrated using example derivations and prototype tool support is discussed.
Resumo:
Solid earth simulations have recently been developed to address issues such as natural disasters, global environmental destruction and the conservation of natural resources. The simulation of solid earth phenomena involves the analysis of complex structures including strata, faults, and heterogeneous material properties. Simulation of the generation and cycle of earthquakes is particularly important, but such simulations require the analysis of complex fault dynamics. GeoFEM is a parallel finite-element analysis system intended for solid earth field phenomena problems. This paper describes recent development in the GeoFEM project for the simulation of earthquake generation and cycles.