978 resultados para Electric properties


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The transport properties through a quantum dot are calculated using the recursion method. The results show that the electric fields can move the conductive peaks along the high- and low-energies. The electric field changes the intensity of conductance slightly. Our theoretical results should be useful for researching and making low-dimensional semiconductor optoelectronic devices. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within the framework of the effective-mass envelope-function theory, the field-dependent intersubband optical properties of a Al0.4Ga0.6As/Al0.2Ga0.8As/GaAs step quantum well are investigated theoretically based on the periodic boundary condition. A very large Stark shift occurs when the lowest subband electron remains confined to the small well while the higher subband electron confined to the big well. The optical nonlinearity in a step well due to resonant intersubband transition (ISBT) is analyzed using a density-matrix approach. The second-harmonic generation coefficient chi(2 omega)((2)) and nonlinear optical rectification chi(0)((2)) have also been investigated theoretically. The results show that the ISBT in a step well can generate very large second order optical nonlinearities, chi(0)((2)) and chi(2 omega)((2)) can be tuned by the electric field over a wide range.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The transport properties through a quantum dot are calculated using the recursion method. The results show that the electric fields can move the conductive peaks along the high- and low-energies. The electric field changes the intensity of conductance slightly. Our theoretical results should be useful for researching and making low-dimensional semiconductor optoelectronic devices. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two new compounds with the formula of CdYMWO7 (M = Cr, Mn) were prepared by solid state reaction. They crystallized with orthorhombic structure with the cell parameters of a = 11.7200 Angstrom, b = 7.1779 Angstrom, c = 6.9805 Angstrom (CdYCrWO7), and a = 11.7960 Angstrom, b = 6.1737 Angstrom, c = 7.6530 Angstrom (CdYMnWO7). These compounds are insulators with high resistivities at room temperature. The temperature dependence of the magnetic susceptibility of CdYMWO7 (M = Cr and Mn) show Curie-Weiss Law's behaviors from 80 to 300 K. The magnetic moments at room temperature fit very well with those corresponding to Cr3+ and Mn3+ ions. This suggests that both Cr and Mn ions exist in + 3 oxidation state in CdYMWO7 compounds. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silver nanorods have been grown by electrodeposition into thin film porous alumina templates (AAO). Optical transmission measurements using p-polarized incident white light shows clear plasmon resonance extinction peaks. We successfully model the dependence on angle in incidence of extinction peak height and position using a multiple-multipoles (MMP) approach with the different spectral features being clearly associated with the effective electric field distribution and coupling between individual nanorods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of both compressive and tensile epitaxial strain along with the electrical boundary conditions on the ferroelastic and ferroelectric domain patterns of bismuth ferrite films was studied. BiFeO3 films were grown on SrTiO3(001), DyScO3(110), GdScO3(110), and SmScO3(110) substrates to investigate the effect of room temperature in-plane strain ranging from -1.4% to +0.75%. Piezoresponse force microscopy, transmission electron microscopy, x-ray diffraction measurements, and ferroelectric polarization measurements were performed to study the properties of the films. We show that BiFeO3 films with and without SrRuO3 bottom electrode have different growth mechanisms and that in both cases reduction of the domain variants is possible. Without SrRuO3, stripe domains with reduced variants are formed on all rare earth scandate substrates because of their monoclinic symmetry. In addition, tensile strained films exhibit a rotation of the unit cell with increasing film thickness. On the other side, the presence of SrRuO3 promotes step flow growth of BiFeO3. In case of vicinal SrTiO3 and DyScO3 substrates with high quality SrRuO3 bottom electrode and a low miscut angle of approximate to 0.15 degrees we observed suppression of the formation of certain domain variants. The quite large in-plane misfit of SrRuO3 with GdScO3 and SmScO3 prevents the growth of high quality SrRuO3 films and subsequent domain variants reduction in BiFeO3 on these substrates, when SrRuO3 is used as a bottom electrode.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from -60°C to 280°C, low vapor pressure, and high ionic conductivity up to 28.4mScm at 150°C and at x=1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius' Law and Vogel-Tamman-Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability. © 2013 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pb1-xCaxTiO3 (0.10less than or equal toxless than or equal to0.40) thin films on Pt/Ti/SiO2/Si(100) substrates were prepared by the soft solution process and their characteristics were investigated as a function of the calcium content (x). The structural modifications in the films were studied using x-ray diffraction and micro-Raman scattering techniques. Lattice parameters calculated from x-ray data indicate a decrease in lattice tetragonality with the increasing content of calcium in these films. Raman spectra exhibited characteristic features of pure PbTiO3 thin films. Variations in the phonon mode wave numbers, especially those of lower wave numbers, of Pb1-xCaxTiO3 thin films as a function of the composition corroborate the decrease in tetragonality caused by the calcium doping. As the Ca content (x) increases from 0.10 to 0.40, the dielectric constant at room temperature abnormally increased at 1 kHz from 148 to 430. Also calcium substitution decreased the remanent polarization and coercive field from 28.0 to 5.3 muC/cm(2) and 124 to 58 kV/cm, respectively. These properties can be explained in terms of variations of phase transition (ferroelectric-paraelectric), resulting from the substitution the lead site of PbTiO(3)for the nonvolatile calcium. (C) 2002 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Measurements of 1H Nuclear Magnetic Resonance (NMR) relaxation times, Electron Paramagnetic Resonance (EPR) and AC Impedance Spectroscopy (IS) are reported for composites based on PEO8:LiClO4 and carbon black (CB), prepared by two methods: solvent and fusion processing. Three nuclear relaxation processes were identified for 1H nuclei: (i) belonging to the polymer chains in the amorphous phase, loosely bound to the CB particles, whose dynamics is almost the same as for unfilled polymer, (ii) belonging to the polymer chains which are tightly attached to the CB particles, and (iii) belonging to the crystalline phase in the loose polymer chain. The paramagnetic electronic susceptibility of the composite samples, measured by EPR, was interpreted by assuming a contribution of localized spin states that follow a Curie law, and a Pauli-like contribution of delocalized spins. A significant change of the EPR linewidth was observed at 40 K, which is the temperature where the Curie and Pauli susceptibilities equally contribute to the paramagnetic electronic susceptibility. The electrical properties are very sensitive to the preparation methods of the composites, which conditions the interaction between carbon particle-carbon particle and carbon particle-polymer chain. Classical statistic models to describe the conductivity in these media were not satisfactory. © 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method for cell–cell and cell–liposome fusion at the single-cell level is described. Individual cells or liposomes were first selected and manipulated either by optical trapping or by adhesion to a micromanipulator-controlled ultramicroelectrode. Spatially selective fusion of the cell–cell or cell–liposome pair was achieved by the application of a highly focused electric field through a pair of 5-μm o.d. carbon-fiber ultramicroelectrodes. The ability to fuse together single cells opens new possibilities in the manipulation of the genetic and cellular makeup of individual cells in a controlled manner. In the study of cellular networks, for example, the alteration of the biochemical identity of a selected cell can have a profound effect on the behavior of the entire network. Fusion of a single liposome with a target cell allows the introduction of the liposomal content into the cell interior as well as the addition of lipids and membrane proteins onto the cell surface. This cell–liposome fusion represents an approach to the manipulation of the cytoplasmic contents and surface properties of single cells. As an example, we have introduced a membrane protein (γ-glutamyltransferase) reconstituted in liposomes into the cell plasma membrane.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Title from cover.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Title varies

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two different morphologies of nanotextured molybdenum oxide were deposited by thermal evaporation. By measuring their field emission (FE) properties, an enhancement factor was extracted. Subsequently, these films were coated with a thin layer of Pt to form Schottky contacts. The current-voltage (I-V) characteristics showed low magnitude reverse breakdown voltages, which we attributed to the localized electric field enhancement. An enhancement factor was obtained from the I-V curves. We will show that the enhancement factor extracted from the I-V curves is in good agreement with the enhancement factor extracted from the FE measurements.