898 resultados para ENERGY RANGE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Absolute measurements have been made of single-electron charge-exchange cross sections of H+, He+, and He2+ in H2O and CO2 in the energy range 0.3-7.5 keV amu(-1). Collisions of this type occur in the interaction of solar wind ions with cometary gases and have been observed by the Giotto spacecraft using the Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) during a close encounter with comet Halley in 1986. Increases in the He+ ion density, and in the He2+ to H+ density ratio were reported by Shelley et al, and Fuselier et al. and were explained by charge exchange. However, the lack of reliable cross sections for this process made interpretation of the data difficult. New cross sections are presented and discussed in relation to the Giotto observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using two complementary experimental methods, we have measured partial (mass-resolved) cross-sections for dissociative electron attachment to the molecule trifluoromethyl sulfurpentafluoride (SF5CF3) at the gas temperature T-G = 300 K over a broad range of electron energies (E = 0.001-12 eV). The absolute scale for these cross-sections was obtained with reference to the thermal (T = 300 K) rate coefficient for anion formation (8.0(3) x 10(-8) cm(3) s(-1)). Below 1 eV, SF5- is the dominant product anion and formed through the lowest anion state which cuts the neutral SF5CF3 potential close to the S-C equilibrium distance. The highly resolved laser photoelectron attachment data exhibit a downward Wigner cusp at 86meV, indicating that the nu(4)(alpha(1)) vibrational mode is important for the primary attachment dynamics. Both SF5- and F- anions are formed with similar yields through the first excited resonance located near 3.6eV. Towards higher energies, the anions CF3-, SF4-, and SF3- are also produced. Summation of the partial cross-sections yields a total absolute cross-section for anion formation over the energy range 0.001-12 eV. This is used to calculate the dependence of the rate coefficient for dissociative electron attachment over a broad range of electron temperatures for the fixed gas temperature T-G = 300 K; good agreement is found between the calculated values and those obtained in a drift tube experiment. In addition to the experimental work, semiempirical R-matrix calculations have been Carried out for the energy dependence of the cross-section for SF5- formation. The experimental findings are semi-quantitatively recovered. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Absolute photoionization cross-section measurements for a mixture of ground and metastable states of Xe4+, Xe5+, and Xe6+ are reported in the photon energy range of 4d -> nf transitions, which occur within or adjacent to the 13.5 nm window for extreme ultraviolet lithography light source development. The reported values allow the quantification of opacity effects in xenon plasmas due to these 4d -> nf autoionizing states. The oscillator strengths for the 4d -> 4f and 4d -> 5f transitions in Xeq+ (q=1-6) ions are calculated using nonrelativistic Hartree-Fock and random phase approximations. These are compared with published experimental values for Xe+ to Xe3+ and with the values obtained from the present experimental cross-section measurements for Xe4+ to Xe6+. The calculations assisted in the determination of the metastable content in the ion beams for Xe5+ and Xe6+. The experiments were performed by merging a synchrotron photon beam generated by an undulator beamline of the Advanced Light Source with an ion beam produced by an electron cyclotron resonance ion source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The correlated process of photodetaching two electrons from the F- ion following the absorption of a single photon has been investigated over an energy range 20-62 eV. In the experiment, a beam of photons from the Advanced Light Source was collinearly merged with a counter-propagating beam of F- ions from a sputter ion source. The F+ ions produced in the interaction region were detected, and the normalized signal was used to monitor the relative cross section for the double-detachment reaction. An absolute scale for the cross section was established by measuring the spatial overlap of the two beams and by determining the efficiency for collection and detection of the F+ ions. The measured cross section is compared with R-matrix and random phase approximation calculations. These calculations show that the Auger decay of the 2s2p(6) core-excited state of the F atom plays a minor role in the production of F+ ions and that double detachment is likely to be dominated by simultaneous correlated ejection of two valence electrons at energies well above threshold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Total cross sections for electron capture are calculated for collisions of fast protons and a-particles with atomic hydrogen. The distorted-wave impulse approximation is applied over the energy range 10-1500 keV/u. State-selective results are given for the 1s, 2s and 2p levels. Both the post and prior forms of the model are calculated and compared with results from other theories and experimental measurements. In general the model performs very well in comparison with experiment over this energy range though discrepancies arise at lower energies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Target normal measurements of proton energy spectra from ultrathin (50-200 nm) planar foil targets irradiated by 10(19) W cm(-2) 40 fs laser pulses exhibit broad maxima that are not present in the energy spectra from micron thickness targets (6 mu m). The proton flux in the peak is considerably greater than the proton flux observed in the same energy range in thicker targets. Numerical modelling of the experiment indicates that this spectral modification in thin targets is caused by magnetic fields that grow at the rear of the target during the laser-target interaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiation biophysics has sought to understand at a molecular level, the mechanisms through which ionizing radiations damage DNA, and other molecules within living cells. The complexity of lesions produced in the DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. To study the relationship between the energy deposited and the damage produced, we have developed novel techniques for irradiating dry prasmid DNA, partially re-hydrated DNA and DNA in solution using monochromatic vacuum-UV synchrotron radiation. We have used photons in the energy range 7-150 eV, corresponding to the range of energies typically involved in the efficient production of DNA single-strand (SSB), and double-strand breaks (DSB) by ionizing radiation. The data show that both types of breaks are produced at all energies investigated (with, or without water present). Also, the energy dependence for DSB induction follows a similar trend to SSB induction but at a 20-30-fold reduced incidence, suggesting a common precursor for both types of damage. Preliminary studies where DNA has been irradiated in solution indicate a change in the shape of the dose-effect curve (from linear, to linear-quadratic for double-strand break induction) and a large increase in sensitivity due to the presence of water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have carried out a 29-state R-matrix calculation in order to calculate collision strengths and effective collision strengths for the electron impact excitation of S III. The recently developed parallel RMATRX II suite of codes have been used, which perform the calculation in intermediate coupling. Collision strengths have been generated over an electron energy range of 0-12 Ryd, and effective collision strength data have been calculated from these at electron temperatures in the range 1000-100,000 K. Results are here presented for the fine-structure transitions between the ground-state configurations of 3s(2)3p(2) P-3(0,1,2), D-1(2), and S-1(0), and the values given resolve a discrepancy between two previous R-matrix calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a combined experimental and theoretical study on dissociative electron attachment (DEA) to pentafluorotoluene, pentafluoroaniline and pentafluorophenol in the energy range 0-3 eV we reveal the role of rearrangement and hydrogen bonded intermediates in the DEA process and show that HF formation can be used to enable otherwise inaccessible, efficient low energy DEA processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantitative scaling relationships among body mass, temperature and metabolic rate of organisms are still controversial, while resolution may be further complicated through the use of different and possibly inappropriate approaches to statistical analysis. We propose the application of a modelling strategy based on the theoretical approach of Akaike's information criteria and non-linear model fitting (nlm). Accordingly, we collated and modelled available data at intraspecific level on the individual standard metabolic rate of Antarctic microarthropods as a function of body mass (M), temperature (T), species identity (S) and high rank taxa to which species belong (G) and tested predictions from metabolic scaling theory (mass-metabolism allometric exponent b = 0.75, activation energy range 0.2-1.2 eV). We also performed allometric analysis based on logarithmic transformations (lm). Conclusions from lm and nlm approaches were different. Best-supported models from lm incorporated T, M and S. The estimates of the allometric scaling exponent linking body mass and metabolic rate resulted in a value of 0.696 +/- 0.105 (mean +/- 95% CI). In contrast, the four best-supported nlm models suggested that both the scaling exponent and activation energy significantly vary across the high rank taxa (Collembola, Cryptostigmata, Mesostigmata and Prostigmata) to which species belong, with mean values of b ranging from about 0.6 to 0.8. We therefore reached two conclusions: 1, published analyses of arthropod metabolism based on logarithmic data may be biased by data transformation; 2, non-linear models applied to Antarctic microarthropod metabolic rate suggest that intraspecific scaling of standard metabolic rate in Antarctic microarthropods is highly variable and can be characterised by scaling exponents that greatly vary within taxa, which may have biased previous interspecific comparisons that neglected intraspecific variability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bond formation and rearrangement reactions in gas phase electron attachment were studied through dissociative electron attachment (DEA) to pentafluorotoluene (PFT), pentafluoroaniline (PFA) and pentafluorophenol (PFP) in the energy range 0-14 eV. In the case of PFA and PFP, the dominant processes involve formation of [M - HF](-) through the loss of neutral HF. This fragmentation channel is most efficient at low incident electron energy and for PFP it is accompanied by a substantial conformational change of the anionic fragment. At higher energy, HF loss is also observed as well as a number of other fragmentation processes. Thermochemical threshold energies have been computed for all the observed fragments and classical trajectories of the electron attachment process were calculated to elucidate the fragmentation mechanisms. For the dominant reaction channel leading to the loss of HF from PFP, the minimum energy path was calculated using the nudged elastic band method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Positron scattering and annihilation on noble-gas atoms is studied ab initio using many-body theory methods for positron energies below the positronium formation threshold. We show that in this energy range, the many-body theory yields accurate numerical results and provides a near-complete understanding of the positron–noble-gas atom system. It accounts for positron-atom and electron-positron correlations, including the polarization of the atom by the positron and the nonperturbative effect of virtual positronium formation. These correlations have a large influence on the scattering dynamics and result in a strong enhancement of the annihilation rates compared to the independent-particle mean-field description. Computed elastic scattering cross sections are found to be in good agreement with recent experimental results and Kohn variational and convergent close-coupling calculations. The calculated values of the annihilation rate parameter Zeff (effective number of electrons participating in annihilation) rise steeply along the sequence of noble-gas atoms due to the increasing strength of the correlation effects, and agree well with experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pseudopotential for positronium-atom interaction, based on electron-atom and positron-atom phase shifts, is constructed, and the phase shifts for Ps-Kr and Ps-Ar scattering are calculated. This approach allows us to extend the Ps-atom cross sections, obtained previously in the impulse approximation [I. I. Fabrikant and G. F. Gribakin, Phys. Rev. Lett. 112, 243201 (2014)], to energies below the Ps ionization threshold. Although experimental data are not available in this low-energy region, our results describe well the tendency of the measured cross sections to drop with decreasing velocity at v < 1 a.u. Our results show that the effect of the Ps-atom van der Waals interaction is weak compared to the polarization interaction in electron-atom and positron-atom scattering. As a result, the Ps scattering length for both Ar and Kr is positive, and the Ramsauer-Townsend minimum is not observed for Ps scattering from these targets. This makes Ps scattering quite different from electron scattering in the low-energy region, in contrast to the intermediate energy range from the Ps ionization threshold up to v ∼ 2 a.u., where the two are similar.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The optical properties of bismuth oxide films prepared by pulsed laser deposition (PLD), absorption in the photon energy range 2.50-4.30 eV and optical functions (n, k, epsilon(1), and epsilon(2)) in the domain 3.20-6.50 eV, have been investigated. As-prepared films (d = 0.05-1.50 mum) are characterized by a mixture of polycrystalline and amorphous phases. The fundamental absorption edge is described by direct optical band-to-band transitions with energies 2.90 and 3.83 eV The dispersion of the optical functions provided values of 4.40-6.25 eV for electron energies of respective direct transitions. In the spectral range 400-1000 nm, bismuth oxide films show a normal dispersion, which can be interpreted in the frame of a single oscillator model. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ab initio total energy calculations using density functional theory with the generalized gradient approximation have been performed for the chemisorption of oxygen atoms on a Pt{100}-(1 x 1) slab. Binding energies for the adsorption of oxygen on different high-symmetry sites are presented. The bridge site is the most stable at a coverage of 0.5 ML, followed by the fourfold hollow site. The atop site is the least stable. This finding is rationalized by analyzing the ''local structures'' formed upon oxygen chemisorption. The binding energies and heats of adsorption at different oxygen coverages show that pairwise repulsive interactions are considerably stronger between oxygen atoms occupying fourfold sites than those occupying bridge sites. Analysis of the partial charge densities associated with Bloch states demonstrates that the O-Pt bond is considerably more localized at the bridge site. These effects cause a sharp drop in the heats of adsorption for oxygen on hollow sites when the coverage is increased from 0.25 to 0.5 ML. Mixing between oxygen p orbitals and Pt d orbitals can be observed over the whole metal d-band energy range.