891 resultados para ENDOTHELIAL-CELL ADHESION
Resumo:
We studied the self-assembly of peptide A6RGD (A: alanine, R: arginine, G: glycine, D: aspartic acid) in water, and the use of A6RGD substrates as coatings to promote the attachment of human cornea stromal fibroblasts (hCSFs). The self-assembled motif of A6RGD was shown to depend on the peptide concentration in water, where both vesicle and fibril formation were observed. Oligomers were detected for 0.7 wt% A6RGD, which evolved into short peptide fibres at 1.0 wt% A6RGD, while a co-existence of vesicles and long peptide fibres was revealed for 2–15 wt% A6RGD. A6RGD vesicle walls were shown to have a multilayer structure built out of highly interdigitated A6 units, while A6RGD fibres were based on β-sheet assemblies. Changes in the self-assembly motif with concentration were reflected in the cell culture assay results. Films dried from 0.1–1.0 wt% A6RGD solutions allowed hCSFs to attach and significantly enhanced cell proliferation relative to the control. In contrast, films dried from 2.5 wt% A6RGD solutions were toxic to hCSFs.
Resumo:
Among the range of materials used in bioengineering, parylene-C has been used in combination with silicon oxide and in presence of the serum proteins, in cell patterning. However, the structural properties of adsorbed serum proteins on these substrates still remain elusive. In this study, we use an optical biosensing technique to decipher the properties of fibronectin (Fn) and serum albumin adsorbed on parylene-C and silicon oxide substrates. Our results show the formation of layers with distinct structural and adhesive properties. Thin, dense layers are formed on parylene-C, whereas thicker, more diffuse layers are formed on silicon oxide. These results suggest that Fn acquires a compact structure on parylene-C and a more extended structure on silicon oxide. Nonetheless, parylene-C and silicon oxide substrates coated with Fn host cell populations that exhibit focal adhesion complexes and good cell attachment. Albumin adopts a deformed structure on parylene-C and a globular structure on silicon oxide, and does not support significant cell attachment on either surface. Interestingly, the co-incubation of Fn and albumin at the ratio found in serum, results in the preferential adsorption of albumin on parylene-C and Fn on silicon oxide. This finding is supported by the exclusive formation of focal adhesion complexes in differentiated mouse embryonic stem cells (CGR8), cultured on Fn/albumin coated silicon oxide, but not on parylene-C. The detailed information provided in this study on the distinct properties of layers of serum proteins on substrates such as parylene-C and silicon oxide is highly significant in developing methods for cell patterning.
Resumo:
The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers’ disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 μM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly “nanodisc” structures was observed. Small-angle X-ray scattering (SAXS) data for Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/ Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates.
Resumo:
We describe a bioactive lipopeptide that combines the capacity to promote the adhesion and subsequent self-detachment of live cells, using template-cell-environment feedback interactions. This self-assembling peptide amphiphile comprises a diene-containing hexadecyl lipid chain (C16e) linked to a matrix metalloprotease-cleavable sequence, Thr-Pro-Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln, and contiguous with a cell-attachment and signalling motif, Arg-Gly-Asp-Ser. Biophysical characterisation revealed that the PA self-assembles into 3 nm diameter spherical micelles above a critical aggregation concentration (cac). In addition, when used in solution at 5–150 nM (well below the cac), the PA is capable of forming film coatings that provide a stable surface for human corneal fibroblasts to attach and grow. Furthermore, these coatings were demonstrated to be sensitive to metalloproteases expressed endogenously by the attached cells, and consequently to elicit the controlled detachment of cells without compromising their viability. As such, this material constitutes a novel class of multi-functional coating for both fundamental and clinical applications in tissue engineering.
Resumo:
The aim of the present study was to investigate the effect of probiotic immobilization onto wheat grains, both wet and freeze dried, on the adhesion properties of the probiotic cells and make comparisons with wet and freeze dried free cells. Lactobacillus casei ATCC 393 and Lactobacillus plantarum NCIMB 8826 were used as model probiotic strains. The results showed satisfactory adhesion ability of free cells to a monolayer of Caco-2 cells (> 1000 CFU/100 Caco-2 cells for wet cells). Cell immobilization resulted in a significant decrease in adhesion, for both wet and freeze dried formulations, most likely because immobilized cells did not have direct access to the Caco-2 cells, but it still remained in adequate levels (> 100 CFU/100 Caco-2 cells for wet cells). No clear correlation could be observed between cell adhesion and the hydrophobicity of the bacterial cells, measured by the hexadecane adhesion assay. Most notably, immobilization enhanced the monolayer integrity of Caco-2 cells, demonstrated by a more than 2-fold increase in transepithelial electrical resistance (TEER) compared to free cells. SEM micrographs ascertained the adhesion of both immobilized and free cells to the brush border microvilli. Finally, the impact of the food matrix on the adhesion properties of probiotic bacteria and on the design of novel functional products is discussed.
Resumo:
A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2ng/ml and as early as 8hrs after exposure. TM activates protein C by altering thrombin’s substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells’ ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone’s effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin-driven tissue ischemia could contribute to the development of the tissue necrosis seen in BU lesions.
Resumo:
We studied the expression pattern of cell adhesion molecules associated to transendothelial migration of leukocytes in different lung`s vascular compartments after administration of a magnetic fluid sample containing maghemite nanoparticles surface-coated with meso-2,3-dimercaptosuccinic acid. The analyses were conducted in mice 4 and 12 h after endovenous administration of the magnetic fluid in control mice. Firstly, the migratory activity of leukocytes after magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration was confirmed using broncho-alveolar lavage and light microscopy. Then, the expression of cell adhesion molecules in the lung`s vascular compartments was investigated by immunofluorescence microscopy of frozen sections, using antibodies against L-selectin, P-selectin, E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1. L- and P-selectin showed similar pattern of expression in the pulmonary vasculature in animals treated with magnetic fluid and in the control group. In contrast, macrophage antigen-1 and leukocyte function associated antigen-1 were found in capillary only in animals treated with magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration. In addition, after magnetic fluid administration E-selectin was found in post-capillary sites. Our findings demonstrated that magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration exhibits modulation effects on expression patterns of E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1 in the lung`s vascular compartments. These findings are very important in a strategy to reduce the potential toxicity of magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration for medical applications.
Resumo:
Angiogenesis, under normal conditions, is a tightly regulated balance between pro- and antiangiogenic factors. The goal of this study was to investigate the mechanisms involved in the control of the skeletal muscle angiogenic response induced by electrical stimulation during the suppression of plasma renin activity (PRA) with a high-salt diet. Rats fed 0.4% or 4% salt diets were exposed to electrical stimulation for 7 days. The tibialis anterior ( TA) muscles from stimulated and unstimulated hindlimbs were removed and prepared for gene expression analysis, CD31-terminal deoxynucleotide transferase-mediated dUTP nick-end labeling ( TUNEL) double-staining assay, and Bcl-2 and Bax protein expression by Western blot. Rats fed a low-salt diet showed a dramatic angiogenesis response in the stimulated limb compared with the unstimulated limb. This angiogenesis response was significantly attenuated when rats were placed on a high-salt diet. Microarray analysis showed that in the stimulated limb of rats fed a low-salt diet many genes related to angiogenesis were upregulated. In contrast, in rats fed a high-salt diet most of the genes upregulated in the stimulated limb function in apoptosis and cell cycle arrest. Endothelial cell apoptosis, as analyzed by CD31-TUNEL staining, increased by fourfold in the stimulated limb compared with the unstimulated limb. There was also a 48% decrease in the Bcl-2-to-Bax ratio in stimulated compared with unstimulated limbs of rats fed a high-salt diet, confirming severe apoptosis. This study suggests that the increase in endothelial cell apoptosis in TA muscle might contribute to the attenuation of angiogenesis response observed in rats fed a high-salt diet.
Resumo:
The purpose of this study was to determine whether intracameral commercial lidocaine 2% induces alterations on the rabbit corneal endothelium. Forty white rabbits received different substances inside the anterior chamber: group (G)1, no substance; G2 and G3 received lidocaine 2% with preservative in aqueous solution; G4 and G5, lidocaine 2% with preservative in gel solution; G6 and G7, the anesthetic preservative (metilparahydroxybenzoate 0.1%); and G8 and G9, lidocaine 2% without preservative in aqueous solution. The animals from G2, 4, 6 and 8 were sacrificed after 1 h, and from G3, 5, 7 and 9 after 24 h after injection of the substance inside the anterior chamber. The corneas were clinically evaluated and assessed by transmission and scanning electron microscopy. G1, 2, 6, 7, 8 and 9 animals had very similar characteristics in clinical, ultrastructural and morphometric evaluations; the G3 and G4 animals showed discrete edema and one animal in G5 had intense corneal edema. We conclude that lidocaine 2% with preservative induces few ultrastructural alterations in the corneal endothelial cells.
Resumo:
Endothelial cell function is essential to maintain corneal transparency, but unfortunately the regenerative capacity of the endothelium is limited. There are only a few reports describing the effect of age on morphologic appearance of corneal endothelial cells of dogs. Studies of normal corneal endothelial cells in humans and dogs have shown a decrease in endothelial cell density (ECD) and an increase in pleomorphism and polymegethism with advancing age. The purpose of this study was to investigate the effect of age on ECD and endothelial cell morphology in dogs. A total of 30 dogs were divided into three groups (10 dogs/group) based on age: group 1 (2-12 months old), group 2 (24-72 months old), and group 3 (84 months or older). Corneas were processed for light and scanning electron microscopy. Results showed only difference in cell density between group 1 and groups 2 and 3, showing an initial decrease in cell density as the animal matured. Whereas there was significantly greater variation in cell size within the dogs in group 3 than there was within the other two groups, suggesting that there was increased polymegethism and pleomorphism with advancing age.
Resumo:
The purpose of this study was to investigate the effect of age on endothelial morphology and morphometry in cats. The corneal endothelium was studied using a contact specular microscope. A total of 18 cats (Felis catus Linnaeus, 1758) were evaluated in this study. The subjects were divided into three groups of six cats each in function of age: G1 (1 to 3 months old), G2 (5 to 12 months old), and G3 (24 to 40 months old). The examination presented data as endothelial cell density (ECD), average cell area, corneal thickness, polymegathism, and pleomorphism. Results revealed ECD decrease in corneas of normal cats with age, as well as a corresponding increase in endothelial cell area and pleomorphism. The present work suggests that the endothelial parameters evaluated change with advancing age.
Resumo:
Galectin-1 (Gal-1), the prototype of a family of β -galactoside-binding proteins, has been shown to attenuate experimental acute and chronic inflammation. In view of the fact that endothelial cells (ECs), but not human polymorphonuclear leukocytes (PMNs), expressed Gal-1 we tested here the hypothesis that the protein could modulate leukocyte-EC interaction in inflammatory settings. In vitro, human recombinant (hr) Gal-1 inhibited PMN chemotaxis and trans-endothelial migration. These actions were specific as they were absent if Gal-1 was boiled or blocked by neutralizing antiserum. In vivo, hrGal-1 (optimum effect at 0.3 μg equivalent to 20 pmol) inhibited interleukin-1β-induced PMN recruitment into the mouse peritoneal cavity. Intravital microscopy analysis showed that leukocyte flux, but not their rolling velocity, was decreased by an anti-inflammatory dose of hrGal-1. Binding of biotinylated Gal-1 to resting and post-adherent human PMNs occurred at concentrations inhibitory in the chemotaxis and transmigration assays. In addition, the pattern of Gal-1 binding was differentially modulated by PMN or EC activation. In conclusion, these data suggest the existence of a previously unrecognized function of Gal-1, that is inhibition of leukocyte rolling and extravasation in experimental inflammation. It is possible that endogenous Gal-1 may be part of a novel anti-inflammatory loop in which the endothelium is the source of the protein and the migrating PMNs the target for its anti-inflammatory action.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Antibodies directed against endothelial cell surface antigens have been described in many disorders and have been associated with disease activity. Since the most prominent histopathologic feature in mixed connective tissue disease (MCTD) is the widespread and unique proliferative vascular lesion, our aim was to evaluate the frequency of anti-endothelial cell antibodies (AECA) in this condition. Objectives: To evaluate the frequency of AECA in this disease and assess its clinical and laboratory associations. Methods: Seventy-three sera from 35 patients with MCTD (Kasukawa's criteria), collected during a 7 year period, were tested for immunoglobulins G and M (IgG and IgM) AECA by cellular ELISA, using HUVEC (human umbilical vein endothelial cells). Sera from 37 patients with systemic lupus erythematosus (SLE), 22 with systemic sclerosis (SSc) and 36 sera from normal healthy individuals were used as controls. A cellular ELISA using HeLa cells was also performed as a laboratory control method. Results: IgG-AECA was detected in 77% of MCTD patients, 54% of SLE patients, 36% of SSc patients and 6% of normal controls. In MCTD, IgG-AECA was associated with vasculitic manifestations, disease activity and lymphopenia, and was also a predictor of constant disease activity. Immunosuppressive drugs were shown to reduce IgG-AECA titers. Since antibodies directed to HeLa cell surface were negative, AECA was apparently unrelated to common epitopes present on epithelial cell lines. Conclusions: AECA are present in a large proportion of patients with MCTD and these antibodies decrease after immunosuppressive treatment. IMAJ 2012; 14:84-87