939 resultados para ENDOPLASMIC-RETICULUM STRESS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many resident membrane proteins of the endoplasmic reticulum (ER) do not have known retrieval sequences. Among these are the so-called tail-anchored proteins, which are bound to membranes by a hydrophobic tail close to the C terminus and have most of their sequence as a cytosolically exposed N-terminal domain. Because ER tail-anchored proteins generally have short (< or = 17 residues) hydrophobic domains, we tested whether this feature is important for localization, using cytochrome b5 as a model. The hydrophobic domain of cytochrome b5 was lengthened by insertion of five amino acids (ILAAV), and the localization of the mutant was analyzed by immunofluorescence in transiently transfected mammalian cells. While the wild-type cytochrome was localized to the ER, the mutant was relocated to the surface. This relocation was not due to the specific sequence introduced, as demonstrated by the ER localization of a second mutant, in which the original length of the membrane anchor was restored, while maintaining the inserted ILAAV sequence. Experiments with brefeldin A and with cycloheximide demonstrated that the extended anchor mutant reached the plasma membrane by transport along the secretory pathway. We conclude that the short membrane anchor of cytochrome b5 is important for its ER residency, and we discuss the relevance of this finding for other ER tail-anchored proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Release of Ca2+ stored in endoplasmic reticulum is a ubiquitous mechanism involved in cellular signal transduction, proliferation, and apoptosis. Recently, sphingolipid metabolites have been recognized as mediators of intracellular Ca2+ release, through their action at a previously undescribed intracellular Ca2+ channel. Here we describe the molecular cloning and characterization of a protein that causes the expression of sphingosyl-phosphocholine-mediated Ca2+ release when its complementary RNA is injected into Xenopus oocytes. SCaMPER (for sphingolipid Ca2+ release-mediating protein of endoplasmic reticulum) is an 181 amino acid protein with two putative membrane-spanning domains. SCaMPER is incorporated into microsomes upon expression in SO cells or after translation in vitro. It mediates Ca2+ release at 4 degrees C as well as 22 degrees C, consistent with having ion channel function. The EC50 for Ca2+ release from Xenopus oocytes is 40 microM, similar to sphingosyl-phosphocholine-mediated Ca2+ release from permeabilized mammalian cells. Because Ca2+ release is not blocked by ryanodine or La3+, the activity described here is distinct from the Ca2+ release activity of the ryanodine receptor and the inositol 1,4,5-trisphosphate receptor. The properties of SCaMPER are identical to those of the sphingolipid-gated Ca2+ channel that we have previously described. These findings suggest that SCaMPER is a sphingolipid-gated Ca2+-permeable channel and support its role as a mediator of this pathway for intracellular Ca2+ signal transduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal peptides direct the cotranslational targeting of nascent polypeptides to the endoplasmic reticulum (ER). It is currently believed that the signal recognition particle (SRP) mediates this targeting by first binding to signal peptides and then by directing the ribosome/nascent chain/SRP complex to the SRP receptor at the ER. We show that ribosomes can mediate targeting by directly binding to translocation sites. When purified away from cytosolic factors, including SRP and nascent-polypeptide-associated complex (NAC), in vitro assembled translation intermediates representing ribosome/nascent-chain complexes efficiently bound to microsomal membranes, and their nascent polypeptides could subsequently be efficiently translocated. Because removal of cytosolic factors from the ribosome/nascent-chain complexes also resulted in mistargeting of signalless nascent polypeptides, we previously investigated whether readdition of cytosolic factors, such as NAC and SRP, could restore fidelity to targeting. Without SRP, NAC prevented all nascent-chain-containing ribosomes from binding to the ER membrane. Furthermore, SRP prevented NAC from blocking ribosome-membrane association only when the nascent polypeptide contained a signal. Thus, NAC is a global ribosome-binding prevention factor regulated in activity by signal-peptide-directed SRP binding. A model presents ribosomes as the targeting vectors for delivering nascent polypeptides to translocation sites. In conjunction with signal peptides, SRP and NAC contribute to this specificity of ribosomal function by regulating exposure of a ribosomal membrane attachment site that binds to receptors in the ER membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two interacting heat shock cognate proteins in the lumen of the yeast endoplasmic reticulum (ER), Sec63p and BiP (Kar2p), are required for posttranslational translocation of yeast alpha-factor precursor in vitro. To investigate the role of these proteins in cotranslational translocation, we examined the import of invertase into wild-type, sec63, and kar2 mutant yeast membranes. We found that Sec63p and Kar2p are necessary for both co- and posttranslational translocation in yeast. Several kar2 mutants, one of which had normal ATPase activity, were defective in cotranslational translocation of invertase. We conclude that the requirement for BiP/Kar2p, which is not seen in a reaction reconstituted with pure mammalian membrane proteins [Görlich, D. & Rapoport, T.A. (1993) Cell 75, 615-630], is not due to a distinction between cotranslational translocation in mammalian cells and posttranslational translocation in yeast cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae gene ERD2 is responsible for the retrieval of lumenal resident proteins of the endoplasmic reticulum (ER) lost to the next secretory compartment. Previous studies have suggested that the retrieval of proteins by ERD2 is not essential. Here, we find that ERD2-mediated retrieval is not an essential process only because, on its failure, a second inducible system acts to maintain levels of ER proteins. The second system is controlled by the ER membrane-bound kinase encoded by IRE1. We conclude that IRE1 and ERD2 together maintain normal concentrations of resident proteins within the ER.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that, after removal of the nascent polypeptide-associated complex (NAC) from ribosome-associated nascent chains, ribosomes synthesizing proteins lacking signal peptides are efficiently targeted to the endoplasmic reticulum (ER) membrane. After this mistargeting, translocation across the ER membrane occurs, albeit less efficiently than for a nascent secretory polypeptide, perhaps because the signal peptide is needed to catalyze the opening of the translocation pore. The mistargeting was prevented by the addition of purified NAC and was shown not to be mediated by the signal recognition particle and its receptor. Instead, it appears to be a consequence of the intrinsic affinity of ribosomes for membrane binding sites, since it can be blocked by competing ribosomes that lack associated nascent polypeptides. We propose that, when bound to a signalless ribosome-associated nascent polypeptide, NAC sterically blocks the site in the ribosome for membrane binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike conventional membrane proteins of the secretory pathway, proteins anchored to the cytoplasmic surface of membranes by hydrophobic sequences near their C termini follow a posttranslational, signal recognition particle-independent insertion pathway. Many such C-terminally-anchored proteins have restricted intracellular locations, but it is not known whether these proteins are targeted directly to the membranes in which they will ultimately reside. Here we have analyzed the intracellular sorting of the Golgi protein giantin, which consists of a rod-shaped 376-kDa cytoplasmic domain followed by a hydrophobic C-terminal anchor sequence. Unexpectedly, we find that giantin behaves like a conventional secretory protein in that it inserts into the endoplasmic reticulum (ER) and then is transported to the Golgi. A deletion mutant lacking a portion of the cytoplasmic domain adjacent to the membrane anchor still inserts into the ER but fails to reach the Golgi, even though this mutant has a stable folded structure. These findings suggest that the localization of a C-terminally-anchored Golgi protein involves at least three steps: insertion into the ER membrane, controlled incorporation into transport vesicles, and retention within the Golgi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Acetylation and deacetylation at specific lysine (K) residues is mediated by histone acetylases (HATs) and deacetylases (HDACs), respectively. HATs and HDACs act on both histone and non-histone proteins, regulating various processes, including cardiac impulse propagation. Aim of the present work was to establish whether the function of the Ca2+ ATPase SERCA2, one of the major players in Ca2+ reuptake during excitation-contraction coupling in cardiac myocytes (CMs), could be modulated by direct K acetylation. Materials and methods: HL-1 atrial mouse cells (donated by Prof. Claycomb), zebrafish and Streptozotocin-induced diabetic rat CMs were treated with the pan-inhibitor of class I and II HDACs suberanilohydroxamic acid (SAHA) for 1.5 hour. Evaluation of SERCA2 acetylation was analyzed by co-immunoprecipitation. SERCA2 activity was measured on microsomes by pyruvate/NADH coupled reaction assay. SERCA2 mutants were obtained after cloning wild-type and mutated sequences into the pCDNA3 vector and transfected into HEK cells. Ca2+ transients in CMs (loading with Fluo3-AM, field stimulation, 0.5 Hz) and in transfected HEK cells (loading with FLUO-4, caffeine pulse) were recorded. Results: Co-Immunoprecipitation experiments performed on HL-1 cells demonstrated a significant increase in the acetylation of SERCA2 after SAHA-treatment (2.5 µM, n=3). This was associated with an increase in SERCA2 activity in microsomes obtained from HL-1 cells, after SAHA exposure (n=5). Accordingly, SAHA-treatment significantly shortened the Ca2+ reuptake time of adult zebrafish CMs. Further, SAHA 2.5 nM restored to control values the recovery time of Ca2+ transients decay in diabetic rat CMs. HDAC inhibition also improved contraction parameters, such as fraction of shortening, and increased pump activity in microsomes isolated from diabetic CMs (n=4). Notably, the K464, identified by bioinformatic tools as the most probable acetylation site on human SERCA2a, was mutated into Glutamine (Q) or Arginine (R) mimicking acetylation and deacetylation respectively. Measurements of Ca2+ transients in HEK cells revealed that the substitution of K464 with R significantly delayed the transient recovery time, thus indicating that deacetylation has a negative impact on SERCA2 function. Conclusions: Our results indicate that SERCA2 function can be improved by pro-acetylation interventions and that this mechanism of regulation is conserved among species. Therefore, the present work provides the basis to open the search for novel pharmacological tools able to specifically improve SERCA2 activity in diseases where its expression and/or function is impaired, such as diabetic cardiomyopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human MxA protein belongs to the superfamily of dynamin-like large GTPases that are involved in intracellular membrane trafficking. MxA is induced by interferons-alpha/beta (IFN-alpha/beta) and is a key component of the antiviral response against RNA viruses. Here, we show that MxA localizes to membranes that are positive for specific markers of the smooth endoplasmic reticulum, such as Syntaxin17, but is excluded from other membrane compartments. Overexpression of MxA leads to a characteristic reorganization of the associated membranes. Interestingly, Hook3, mannose-6-phosphate receptor, and Lamp-1, which normally accumulate in cis-Golgi, endosomes, and lysosomes, respectively, also colocalized with MxA, indicating that these markers were redistributed to the MxA-positive compartment. Functional assays, however, did not show any effect of MxA on endocytosis or the secretory pathway. The present results demonstrate that MxA is an IFN-induced antiviral effector protein that resembles the constitutively expressed large GTPase family members in its capacity to localize to and reorganize intracellular membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adjuvant arthritis (AA) was induced by intradermal administration of Mycobacterium butyricum to the tail of Lewis rats. In sarcoplasmic reticulum (SR) of skeletal muscles, we investigated the development of AA. SR Ca(2+)-ATPase (SERCA) activity decreased on day 21, suggesting possible conformational changes in the transmembrane part of the enzyme, especially at the site of the calcium binding transmembrane part. These events were associated with an increased level of protein carbonyls, a decrease in cysteine SH groups, and alterations in SR membrane fluidity. There was no alteration in the nucleotide binding site at any time point of AA, as detected by a FITC fluorescence marker. Some changes observed on day 21 appeared to be reversible, as indicated by SERCA activity, cysteine SH groups, SR membrane fluidity, protein carbonyl content and fluorescence of an NCD-4 marker specific for the calcium binding site. The reversibility may represent adaptive mechanisms of AA, induced by higher relative expression of SERCA, oxidation of cysteine, nitration of tyrosine and presence of acidic phospholipids such as phosphatidic acid. Nitric oxide may regulate cytoplasmic Ca(2+) level through conformational alterations of SERCA, and decreasing levels of calsequestrin in SR may also play regulatory role in SERCA activity and expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

mRNA localization is emerging as a critical cellular mechanism for the spatiotemporal regulation of protein expression and serves important roles in oogenesis, embryogenesis, cell fate specification, and synapse formation. Signal sequence-encoding mRNAs are localized to the endoplasmic reticulum (ER) membrane by either of two mechanisms, a canonical mechanism of translation on ER-bound ribosomes (signal recognition particle pathway), or a poorly understood direct ER anchoring mechanism. In this study, we identify that the ER integral membrane proteins function as RNA-binding proteins and play important roles in the direct mRNA anchoring to the ER. We report that one of the ER integral membrane RNA-binding protein, AEG-1 (astrocyte elevated gene-1), functions in the direct ER anchoring and translational regulation of mRNAs encoding endomembrane transmembrane proteins. HITS-CLIP and PAR-CLIP analyses of the AEG-1 mRNA interactome of human hepatocellular carcinoma cells revealed a high enrichment for mRNAs encoding endomembrane organelle proteins, most notably encoding transmembrane proteins. AEG-1 binding sites were highly enriched in the coding sequence and displayed a signature cluster enrichment downstream of encoded transmembrane domains. In overexpression and knockdown models, AEG-1 expression markedly regulates translational efficiency and protein functions of two of its bound transcripts, MDR1 and NPC1. This study reveals a molecular mechanism for the selective localization of mRNAs to the ER and identifies a novel post-transcriptional gene regulation function for AEG-1 in membrane protein expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims/hypothesis
Intra-retinal extravasation and modification of LDL have been implicated in diabetic retinopathy: autophagy may mediate these effects.
Methods
Immunohistochemistry was used to detect autophagy marker LC3B in human and murine diabetic and non-diabetic retinas. Cultured human retinal capillary pericytes (HRCPs) were treated with in vitro-modified heavily-oxidised glycated LDL (HOG-LDL) vs native LDL (N-LDL) with or without autophagy modulators: green fluorescent protein–LC3 transfection; small interfering RNAs against Beclin-1, c-Jun NH(2)-terminal kinase (JNK) and C/EBP-homologous protein (CHOP); autophagy inhibitor 3-MA (5 mmol/l) and/or caspase inhibitor Z-VAD-fmk (100 μmol/l). Autophagy, cell viability, oxidative stress, endoplasmic reticulum stress, JNK activation, apoptosis and CHOP expression were assessed by western blots, CCK-8 assay and TUNEL assay. Finally, HOG-LDL vs N-LDL were injected intravitreally to STZ-induced diabetic vs control rats (yielding 50 and 200 mg protein/l intravitreal concentration) and, after 7 days, retinas were analysed for ER stress, autophagy and apoptosis.
Results
Intra-retinal autophagy (LC3B staining) was increased in diabetic vs non-diabetic humans and mice. In HRCPs, 50 mg/l HOG-LDL elicited autophagy without altering cell viability, and inhibition of autophagy decreased survival. At 100–200 mg/l, HOG-LDL caused significant cell death, and inhibition of either autophagy or apoptosis improved survival. Further, 25–200 mg/l HOG-LDL dose-dependently induced oxidative and ER stress. JNK activation was implicated in autophagy but not in apoptosis. In diabetic rat retina, 50 mg/l intravitreal HOG-LDL elicited autophagy and ER stress but not apoptosis; 200 mg/l elicited greater ER stress and apoptosis.
Conclusions
Autophagy has a dual role in diabetic retinopathy: under mild stress (50 mg/l HOG-LDL) it is protective; under more severe stress (200 mg/l HOG-LDL) it promotes cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as histone acetyltransferases or HATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The proinflammatory environment is increasingly being recognised as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential & current development of histone deacetylases for the treatment of diseases for which a proinflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the proinflammatory environment. © 2009 Bentham Science Publishers Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globally, obesity and diabetes (particularly type 2 diabetes) represents a major challenge to world health. Despite decades of intense research efforts, the genetic basis involved in diabetes pathogenesis & conditions associated with obesity are still poorly understood. Recent advances have led to exciting new developments implicating epigenetics as an important mechanism underpinning diabetes and obesity related disease. One epigenetic mechanism known as the "histone code" describes the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as lysine acetyltransferases or KATs and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. Some of the known inhibitors of HDACs (HDACi) have also been shown to act as "chemical chaperones" to alleviate diabetic symptoms. In this review, we discuss the available evidence concerning the roles of HDACs in regulating chaperone function and how this may have implications in the management of diabetes. © 2009 Bentham Science Publishers Ltd.