997 resultados para Drugs- pre-formulation
Resumo:
Topical and transdermal formulations are promising platforms for the delivery of drugs. A unit dose topical or transdermal drug delivery system that optimises the solubility of drugs within the vehicle provides a novel dosage form for efficacious delivery that also offers a simple manufacture technique is desirable. This study used Witepsol® H15 wax as a abase for the delivery system. One aspect of this project involved determination of the solubility of ibuprofen, flurbiprofen and naproxen in the was using microscopy, Higuchi release kinetics, HyperDSC and mathematical modelling techniques. Correlations between the results obtained via these techniques were noted with additional merits such as provision of valuable information on drug release kinetics and possible interactions between the drug and excipients. A second aspect of this project involved the incorporation of additional excipients: Tween 20 (T), Carbopol®971 (C) and menthol (M) to the wax formulation. On in vitro permeation through porcine skin, the preferred formulations were: ibuprofen (5% w/w) within Witepsol®H15 + 1% w/w T; flurbiprofen (10% w/w) within Witepsol®H15 + 1% w/w T; naproxen (5% w/w) within Witepsol®H15 + 1% w/w T + 1% C and sodium diclofenac (10% w/w) within Witepsol®H15 + 1% w/w T + 1% w/w T + 1% w/w C + 5% w/w M. Unit dose transdermal tablets containing ibuprofen and diclofenac were produced with improved flux compared to marketed products; Voltarol Emugel® demonstrated flux of 1.68x10-3 cm/h compared to 123 x 10-3 cm/h for the optimised product as detailed above; Ibugel Forte® demonstrated a permeation coefficient value of 7.65 x 10-3 cm/h compared to 8.69 x 10-3 cm/h for the optimised product as described above.
Resumo:
High-performance liquid chromatographic methods are developed for the simultaneous determination of various salicylates, their p-hydroxy isomers and nicotinic acid esters. The method is sensitive enough to detect trace amounts (~µM/L)of the product generated from cross reactivity between the drugs and the vehicle. The developed method also allows analysis of various topical products containing salicylate and nicotinate esters in their formulations. Applying this method, the degradation profiles of salicylates, nicotinates, p-hydroxy benzoate, o-methoxy benzoate and aspirin prodrugs in alkaline media are determined. The profile for alkyl salicylate degradation is found to be first order (A---? B) When the alcoholic radical is similar to that of the ester. In alcohol having a radical different from that of the ester function, the degradation is found to proceed through competitive transesterification and hydrolysis. The intermediates are identified following synthesis and isolation. The rate and extent of transesterification depends on the proportion of alcohol present in the system. Equations are presented to model the time profiles of reactant and product concentration. The reactions are base catalysed and the predominant pathway involves a concerted solvent attack upon the salicylate anion. Competitive hydrolysis of both ester components also follows this mechanism at moderate pH values but rates increase under strongly alkaline conditions as direct hydroxide attack becomes significant. In contrast, transesterification is independent of base concentration once full ionization is accomplished. The competitive hydrolysis is modelled using equations involving the dielectric constant of the medium. A range of other esters are also shown to undergo base-catalysed transesterification. In non-alcoholic solution phenyl salicylate undergoes a concentration-dependent oligomerisation which yields salsalate among the products. Competitive transesterification and hydrolysis also occur in products for topical use which have vehicles based upon alcohol, glycol or glycol polymers. Such reactions may compromise stability assessments, pharmaceutical integrity and delivery profiles.
Resumo:
Reversed-pahse high-performance liquid chromatographic (HPLC) methods were developed for the assay of indomethacin, its decomposition products, ibuprofen and its (tetrahydro-2-furanyl)methyl-, (tetrahydro-2-(2H)pyranyl)methyl- and cyclohexylmethyl esters. The development and application of these HPLC systems were studied. A number of physico-chemical parameters that affect percutaneous absorption were investigated. The pKa values of indomethacin and ibuprofen were determined using the solubility method. Potentiometric titration and the Taft equation were also used for ibuprofen. The incorporation of ethanol or propylene glycol in the solvent resulted in an improvement in the aqueous solubility of these compounds. The partition coefficients were evaluated in order to establish the affinity of these drugs towards the stratum corneum. The stability of indomethacin and of ibuprofen esters were investigated and the effect of temperature and pH on the decomposition rates were studied. The effect of cetyltrimethylammonium bromide on the alkaline degradation of indomethacin was also followed. In the presence of alcohol, indomethacin alcoholysis was observed and the kinetics of decomposition were subjected to non-linear regression analysis and the rate constants for the various pathways were quantified. The non-isothermal, sufactant non-isoconcentration and non-isopH degradation of indomethacin were investigated. The analysis of the data was undertaken using NONISO, a BASIC computer program. The degradation profiles obtained from both non-iso and iso-kinetic studies show that there is close concordance in the results. The metabolic biotransformation of ibuprofen esters was followed using esterases from hog liver and rat skin homogenates. The results showed that the esters were very labile under these conditions. The presence of propylene glycol affected the rates of enzymic hydrolysis of the ester. The hydrolysis is modelled using an equation involving the dielectric constant of the medium. The percutaneous absorption of indomethacin and of ibuprofen and its esters was followed from solutions using an in vitro excised human skin model. The absorption profiles followed first order kinetics. The diffusion process was related to their solubility and to the human skin/solvent partition coefficient. The percutaneous absorption of two ibuprofen esters from suspensions in 20% propylene glycol-water were also followed through rat skin with only ibuprofen being detected in the receiver phase. The sensitivity of ibuprofen esters to enzymic hydrolysis compared to the chemical hydrolysis may prove valuable in the formulation of topical delivery systems.
Resumo:
Human arythrocytes were used as a model system for an investigation of the mechanism of action of the antiproliferative drug Adriamycin. Erythrocytes were induced to undergo a change in morphology by elevation of intracellular calcium. It was revealed that the widely used media employed for the study of morphological change were unsuitable; a new incubation medium was developed so that cells were metabolically replete. In this medium echinocytosis took place both in a calcium concentration- and time-dependent manner. Pretreatment of erythrocytes with Adriamycin (10 M for 10 mins) protected the erythrocytes against calcium-induced echinocytosis at calcium concentrations < 150M. SDS-PAGE analysis of the cytoskeletal proteins prepared from erythrocytes revealed the calcium-induced proteolysis of two main cytoskeletal proteins: band 2:1 and band 4:1. Only the rate of the proteolysis of band 2.1 correlated with the onset of echinocytosis. Adriamycin inhibited the breakdown of band 2.1 even when the cells formed echinocytes; this raises doubts concerning the importance of band 2.1 in the maintenance of discocyte morphology. Adriamycin only marginally inhibited the purified calcium-activated thio protease (calpain). Calcium-loading of human erythrocytes increased the phosphorylation of several major cytoskeletal proteins including pp120, band 3, band 4.1 and band 4.9. The pattern of increase resembled that induced by 12-0-tetradecanoyl-phorbol-13-acetate. Pre-treatment with Adriamycin prior to calcium loading caused a general lowering of basal phosphorylation. Adriamycin had no effect on the activity of the calcium-activated phospholipid-dependent protein kinase (protein kinase C). A hypothesis is put forward that the morphological transition of erythrocytes might be dependent upon the activity of a contractile system.
Resumo:
Reversed-phase high-performance liquid chromatography procedures were developed for the analysis of pyrimidine-based drugs bropirimine and its derivatives (2-N-acetyl- and 2-N-propanoyl-) and for pyrimethamine and its 2/4- substituted derivatives (2, N-propanoyl and 2,4-N, N-dipropanoyl-) and its 6- substituted (methyl-, ethyl-, propyl- and isopropyl- carboxylates) analogues. Stability studies indicated that these derivatives were not sufficiently labile to act as potential prodrugs. Solubility-pH profiles were constructed from which the dissociation constants were calculated. The physicochemical properties of these compounds were studied and attempts were made to increase the poor aqueous solubility of bropirimine (35μg/mL) by prodrug synthesis, solvate formation (acetic acid, N, N-dimethylformamide and N-methylformamide) and the use of co-solvents and additives. The first two methods proved to be fruitless whereas the latter method resulted in an intravenous formulation incorporating 32mg/mL of bropirimine. An in-vitro method for the detection of precipitation was developed and the results suggested that by using low injection rates (< 0.24mL/min) and high mobile phase flow rates (> 500mL/hr) precipitation could be minimised. Differential scanning calorimetry showed that bropirimine debrominates in the presence of a number of additives commonly used in formulation work but the temperature at which this occurred were usually > 200oC. In-vitro work gave encouraging results for the possibility of rectal delivery of bropirimine but in-vivo work on rabbits showed considerable variations in the resulting plasma levels and pharmacokinetic parameters.
Resumo:
Effective surface disinfection is a fundamental infection control strategy within healthcare. This study assessed the antimicrobial efficacy of novel biocide formulations comprising 5% and 2% eucalyptus oil (EO) combined with 2% chlorhexidine digluconate (CHG) and 70% isopropyl alcohol (IPA) contained within a wipe. The efficacy of this novel antimicrobial formulation to remove and eliminate methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Candida albicans from steel surfaces was investigated. Adpression studies of pre-contaminated wipes were also utilised to assess their potential to induce cross-contamination between hard surfaces. Furthermore, the bactericidal nature of the EO-formulation was established in addition to time-kill. The EO-containing formulations demonstrated bactericidal antimicrobial efficacy against all microorganisms and did not induce surface cross-contamination. There was no significant difference (p < 0.05) between the 5% and 2% EO formulations in their ability to remove microorganisms from steel surfaces, however both significantly (p < 0.05) removed more than the control formulations. Microbial biofilms were eliminated within 10 min (p < 0.05) when exposed to the EO formulations. Our novel EO-formulation demonstrated rapid antimicrobial efficacy for potential disinfection and elimination of microbial biofilms from hard surfaces and may therefore be a useful adjunct to current infection control strategies currently employed within healthcare facilities.
Resumo:
Orally disintegrating tablets (ODTs) which are also referred to as orodispersible and fast disintegrating tablets, are solid oral dosage forms which upon placing on the tongue, disperse/disintegrate rapidly before being swallowed as a suspension or solution. ODTs are therefore easier and more convenient to administer than conventional tablets and are particularly beneficial for paediatric and geriatric patients, who generally have difficulty swallowing their medication. The work presented in this thesis involved the formulation and process development of ODTs, prepared using freeze-drying. Gelatin is one of the principal excipients used in the formulation of freeze-dried ODTs. One of the studies presented in this thesis investigated the potential modification of the properties of this excipient, in order to improve the performance of the tablets. As gelatin is derived from animal sources, a number of ethical issues surround its use as an excipient in pharmaceutical preparations. This was one of the motivations, Methocel™ and Kollicoat® IR were evaluated as binders as alternative materials to gelatin. Polyox™ was also evaluated as a binder together with its potential uses as a viscosity increasing and mucoadhesive agent to increase the retention of tablets in the mouth to encourage pre-gastric absorption of active pharmaceutical ingredients (APIs). The in vitro oral retention of freeze-dried ODT formulations was one property which was assessed in a design of experiments – factorial design study, which was carried out to further understand the role that formulation excipients have on the properties of the tablets. Finally, the novel approach of incorporating polymeric nanoparticles in freeze-dried ODTs was investigated, to study if the release profile of APIs could be modified, which could improve their therapeutic effect. The results from these studies demonstrated that the properties of gelatin-based formulations can be modified by adjusting pH and ionic strength. Adjustment of formulation pH has shown to significantly reduce tablet disintegration time. Evaluating Methocel™, in particular low viscosity grades, and Kollicoat® IR as binders has shown that these polymers can form tablets of satisfactory hardness and disintegration time. Investigating Polyox™ as an excipient in freeze-dried ODT formulations revealed that low viscosity grades appear suitable as binders whilst higher viscosity grades could potentially be utilised as viscosity increasing and mucoadhesive agents. The design of experiments – factorial design study revealed the influence of individual excipients in a formulation mix on resultant tablet properties and in vitro oral retention of APIs. Novel methods have been developed, which allows the incorporation of polymeric nanoparticles in situ in freeze-dried ODT formulations, which allows the modification of the release profile of APIs.
Resumo:
Oral drug delivery is considered the most popular route of delivery because of the ease of administration, availability of a wide range of dosage forms and the large surface area for drug absorption via the intestinal membrane. However, besides the unfavourable biopharmaceutical properties of the therapeutic agents, efflux transporters such as Pglycoprotein (P-gp) and multiple resistance proteins (MRP) decrease the overall drug uptake by extruding the drug from the cells. Although, prodrugs have been investigated to improve drug partitioning by masking the polar groups covalently with pre-moieties promoting increased uptake, they present significant challenges including reduced solubility and increased toxicity. The current work investigates the use of amino acids as ion-pairs for three model drugs: indomethacin (weak acid), trimethoprim (weak base) and ciprofloxacin (zwitter ion) in an attempt to improve both solubility and uptake. Solubility was studied by salt formation while creating new routes for uptake across the membranes via amino acids transporter proteins or dipeptidyl transporters was the rationale to enhance absorption. New salts were prepared for the model drugs and the oppositely charged amino acids by freeze drying and they were characterised using FTIR, 1HNMR, DSC, SEM, pH solubility profile, solubility and dissolution. Permeability profiles were assessed using an in vitro cell based method; Caco-2 cells and the genetic changes occurring across the transporter genes and various pathways involved in the cellular activities were studied using DNA microarrays. Solubility data showed a significant increase in drug solubility upon preparing the new salts with the oppositely charged counter ions (ciprofloxacin glutamate salt exhibiting 2.9x103 fold enhancement when compared to the free drug). Moreover, permeability studies showed a 3 fold increase in trimethoprim and indomethacin permeabilities upon ion-pairing with amino acids and more than 10 fold when the zwitter ionic drug was paired with glutamic acid. Microarray data revealed that trimethoprim was absorbed actively via OCTN1 transporters while MRP7 is the main transporter gene that mediates its efflux. The absorption of trimethoprim from trimethoprim glutamic acid ion-paired formulations was affected by the ratio of glutamic acid in the formulation which was inversely proportional to the degree of expression of OCTN1. Interestingly, ciprofloxacin glutamic acid ion-pairs were found to decrease the up-regulation of ciprofloxacin efflux proteins (P-gp and MRP4) and over-express two solute carrier transporters; (PEPT2 and SLCO1A2) suggesting that a high aqueous binding constant (K11aq) enables the ion-paired formulations to be absorbed as one entity. In conclusion, formation of ion-pairs with amino acids can influence in a positive way solubility, transfer and gene expression effects of drugs.
Resumo:
Whether to assess the functionality of equipment or as a determinate for the accuracy of assays, reference standards are essential for the purposes of standardisation and validation. The ELISPOT assay, developed over thirty years ago, has emerged as a leading immunological assay in the development of novel vaccines for the assessment of efficacy. However, with its widespread use, there is a growing demand for a greater level of standardisation across different laboratories. One of the major difficulties in achieving this goal has been the lack of definitive reference standards. This is partly due to the ex vivo nature of the assay, which relies on cells being placed directly into the wells. Thus, the aim of this thesis was to produce an artificial reference standard using liposomes, for use within the assay. Liposomes are spherical bilayer vesicles with an enclosed aqueous compartment and therefore are models for biological membranes. Initial work examined pre-design considerations in order to produce an optimal formulation that would closely mimic the action of the cells ordinarily placed on the assay. Recognition of the structural differences between liposomes and cells led to the formulation of liposomes with increased density. This was achieved by using a synthesised cholesterol analogue. By incorporating this cholesterol analogue in liposomes, increased sedimentation rates were observed within the first few hours. The optimal liposome formulation from these studies was composed of 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), cholesterol (Chol) and brominated cholesterol (Brchol) at a 16:4:12 µMol ratio, based on a significantly higher (p<0.01) sedimentation (as determined by a percentage transmission of 59 ± 5.9 % compared to the control formulation at 29 ± 12 % after four hours). By considering a range of liposome formulations ‘proof of principle’ for using liposomes as ELISPOT reference standards was shown; recombinant IFN? cytokine was successfully entrapped within vesicles of different lipid compositions, which were able to promote spot formation within the ELISPOT assay. Using optimised liposome formulations composed of phosphatidylcholine with or without cholesterol (16 µMol total lipid) further development was undertaken to produce an optimised, scalable protocol for the production of liposomes as reference standards. A linear increase in spot number by the manipulation of cytokine concentration and/or lipid concentrations was not possible, potentially due to the saturation that occurred within the base of wells. Investigations into storage of the formulations demonstrated the feasibility of freezing and lyophilisation with disaccharide cryoprotectants, but also highlighted the need for further protocol optimisation to achieve a robust reference standard upon storage. Finally, the transfer of small-scale production to a medium lab-scale batch (40 mL) demonstrated this was feasible within the laboratory using the optimised protocol.
Resumo:
Oral liquid formulations are ideal dosage forms for paediatric, geriatric and patient with dysphagia. Dysphagia is prominent among patients suffering from stroke, motor neurone disease, advanced Alzheimer’s and Parkinson’s disease. However oral liquid preparations are particularly difficult to formulate for hydrophobic and unstable drugs. Therefore current methods employed in solving this issue include the use of ‘specials’ or extemporaneous preparations. In order to challenge this, the government has encouraged research into the field of oral liquid formulations, with the EMEA and MHRA publishing list of drugs of interest. The current work investigates strategic formulation development and characterisation of select API’s (captopril, gliclazide, melatonin, L-arginine and lansoprazole), each with unique obstacles to overcome during solubilisation, stabilisation and when developing a palatable dosage from. By preparing a validated calibration protocol for each of the drug candidates, the oral liquid formulations were assessed for stability, according to the ICH guidelines along with thorough physiochemical characterisation. The results showed that pH and polarity of the solvent had the greatest influence on the extent of drug solubilisation, with inclusion of antioxidants and molecular steric hindrance influencing the extent of drug stability. Captopril, a hydrophilic ACE inhibitor (160 mg.mL-1), undergoes dimerisation with another captopril molecule. It was found that with the addition of EDTA and HP-β-CD, the drug molecule was stabilised and prevented from initiating a thiol induced first order free radical oxidation. The cyclodextrin provided further steric hindrance (1:1 molar ratio) resulting in complete reduction of the intensity of sulphur like smell associated with captopril. Palatability is a crucial factor in patient compliance, particularly when developing a dosage form targeted towards paediatrics. L-arginine is extremely bitter in solution (148.7 g.L-1). The addition of tartaric acid into the 100 mg.mL-1 formulation was sufficient to mask the bitterness associated with its guanidium ions. The hydrophobicity of gliclazide (55 mg.L-1) was strategically challenged using a binary system of a co-solvent and surfactant to reduce the polarity of the medium and ultimately increase the solubility of the drug. A second simpler method was developed using pH modification with L-arginine. Melatonin has two major obstacles in formulation: solubility (100 μg.mL-1) and photosensitivity, which were both overcome by lowering the dielectric constant of the medium and by reversibly binding the drug within the cyclodextrin cup (1:1 ratio). The cyclodextrin acts by preventing UV rays from reaching the drug molecule and initiated the degradation pathway. Lansoprazole is an acid labile drug that could only be delivered orally via a delivery vehicle. In oral liquid preparations this involved nanoparticulate vesicles. The extent of drug loading was found to be influenced by the type of polymer, concentration of polymer, and the molecular weight. All of the formulations achieved relatively long shelf-lives with good preservative efficacy.
Resumo:
Pre-eclampsia is a vascular disorder of pregnancy where anti-angiogenic factors, systemic inflammation and oxidative stress predominate, but none can claim to cause pre-eclampsia. This review provides an alternative to the 'two-stage model' of pre-eclampsia in which abnormal spiral arteries modification leads to placental hypoxia, oxidative stress and aberrant maternal systemic inflammation. Very high maternal soluble fms-like tyrosine kinase-1 (sFlt-1 also known as sVEGFR) and very low placenta growth factor (PlGF) are unique to pre-eclampsia; however, abnormal spiral arteries and excessive inflammation are also prevalent in other placental disorders. Metaphorically speaking, pregnancy can be viewed as a car with an accelerator and brakes, where inflammation, oxidative stress and an imbalance in the angiogenic milieu act as the 'accelerator'. The 'braking system' includes the protective pathways of haem oxygenase 1 (also referred as Hmox1 or HO-1) and cystathionine-γ-lyase (also known as CSE or Cth), which generate carbon monoxide (CO) and hydrogen sulphide (H2S) respectively. The failure in these pathways (brakes) results in the pregnancy going out of control and the system crashing. Put simply, pre-eclampsia is an accelerator-brake defect disorder. CO and H2S hold great promise because of their unique ability to suppress the anti-angiogenic factors sFlt-1 and soluble endoglin as well as to promote PlGF and endothelial NOS activity. The key to finding a cure lies in the identification of cheap, safe and effective drugs that induce the braking system to keep the pregnancy vehicle on track past the finishing line.
Resumo:
Nanoparticles offer an ideal platform for the delivery of small molecule drugs, subunit vaccines and genetic constructs. Besides the necessity of a homogenous size distribution, defined loading efficiencies and reasonable production and development costs, one of the major bottlenecks in translating nanoparticles into clinical application is the need for rapid, robust and reproducible development techniques. Within this thesis, microfluidic methods were investigated for the manufacturing, drug or protein loading and purification of pharmaceutically relevant nanoparticles. Initially, methods to prepare small liposomes were evaluated and compared to a microfluidics-directed nanoprecipitation method. To support the implementation of statistical process control, design of experiment models aided the process robustness and validation for the methods investigated and gave an initial overview of the size ranges obtainable in each method whilst evaluating advantages and disadvantages of each method. The lab-on-a-chip system resulted in a high-throughput vesicle manufacturing, enabling a rapid process and a high degree of process control. To further investigate this method, cationic low transition temperature lipids, cationic bola-amphiphiles with delocalized charge centers, neutral lipids and polymers were used in the microfluidics-directed nanoprecipitation method to formulate vesicles. Whereas the total flow rate (TFR) and the ratio of solvent to aqueous stream (flow rate ratio, FRR) was shown to be influential for controlling the vesicle size in high transition temperature lipids, the factor FRR was found the most influential factor controlling the size of vesicles consisting of low transition temperature lipids and polymer-based nanoparticles. The biological activity of the resulting constructs was confirmed by an invitro transfection of pDNA constructs using cationic nanoprecipitated vesicles. Design of experiments and multivariate data analysis revealed the mathematical relationship and significance of the factors TFR and FRR in the microfluidics process to the liposome size, polydispersity and transfection efficiency. Multivariate tools were used to cluster and predict specific in-vivo immune responses dependent on key liposome adjuvant characteristics upon delivery a tuberculosis antigen in a vaccine candidate. The addition of a low solubility model drug (propofol) in the nanoprecipitation method resulted in a significantly higher solubilisation of the drug within the liposomal bilayer, compared to the control method. The microfluidics method underwent scale-up work by increasing the channel diameter and parallelisation of the mixers in a planar way, resulting in an overall 40-fold increase in throughput. Furthermore, microfluidic tools were developed based on a microfluidics-directed tangential flow filtration, which allowed for a continuous manufacturing, purification and concentration of liposomal drug products.
Resumo:
This work was supported by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No 305316 as part of the MOTIF (Microbicides Optimisation Through Innovative Formulation for Vaginal and Rectal Delivery) project. We would like to extend our thanks to all the study participants for their invaluable contribution and to Grampian Biorepository staff for help with collection of fresh colorectal resection tissue.
Resumo:
The aim of the present study was to develop novel Mycobacterium bovis bacille Calmette-Guérin (BCG)-loaded polymeric microparticles with optimized particle surface characteristics and biocompatibility, so that whole live attenuated bacteria could be further used for pre-exposure vaccination against Mycobacterium tuberculosis by the intranasal route. BCG was encapsulated in chitosan and alginate microparticles through three different polyionic complexation methods by high speed stirring. For comparison purposes, similar formulations were prepared with high shear homogenization and sonication. Additional optimization studies were conducted with polymers of different quality specifications in a wide range of pH values, and with three different cryoprotectors. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. Chitosan addition to BCG shifted the bacilli surface charge from negative zeta potential values to strongly positive ones. Chitosan of low molecular weight produced particle suspensions of lower size distribution and higher stability, allowing efficient BCG encapsulation and biocompatibility. Particle formulation consistency was improved when the availability of functional groups from alginate and chitosan was close to stoichiometric proportion. Thus, the herein described microparticulate system constitutes a promising strategy to deliver BCG vaccine by the intranasal route.
Resumo:
Introduction. The authors consider the type and the incidence of the adverse effects due to the interaction between ophthalmic drugs and general anaesthesia in pediatric ophthalmic surgery. Patients and Methods. The experience included 176 general anaesthesia in 100 children aged between 9,2 months and 11,4 years (mean age 4,9 years). Results. In the 100 patients we reported: 4 cases (2.7% general anaesthesias) of sinus tachycardia with heart rhythm varying between 170 and 180 beats per minute (3.6%); 5 cases of sinus bradycardia, varying between 60 and 70 beats per minute (3.3%); 3 cases of bronchospasm (2%); 2 cases of psychomotor agitation/disturbances in pre-convulsive state after anaesthesia (1.3%); 3 cases of arterial hypotension (60-70 mmHg) (2%); 7 cases of skin rush around neck and chest (4.6%); 1 case of prolonged apnoea (0.6%). Conclusions. The clinical manifestations, principally on the cardio-circulatory and nervous system are subjected to critical revision, to foresee the pharmacological interferences and therefore to prepare the necessary measure of medical treatment.