990 resultados para Drug-monitoring
Resumo:
PURPOSE This study assessed whether a cycle of "routine" therapeutic drug monitoring (TDM) for imatinib dosage individualization, targeting an imatinib trough plasma concentration (C min) of 1,000 ng/ml (tolerance: 750-1,500 ng/ml), could improve clinical outcomes in chronic myelogenous leukemia (CML) patients, compared with TDM use only in case of problems ("rescue" TDM). METHODS Imatinib concentration monitoring evaluation was a multicenter randomized controlled trial including adult patients in chronic or accelerated phase CML receiving imatinib since less than 5 years. Patients were allocated 1:1 to "routine TDM" or "rescue TDM." The primary endpoint was a combined outcome (failure- and toxicity-free survival with continuation on imatinib) over 1-year follow-up, analyzed in intention-to-treat (ISRCTN31181395). RESULTS Among 56 patients (55 evaluable), 14/27 (52 %) receiving "routine TDM" remained event-free versus 16/28 (57 %) "rescue TDM" controls (P = 0.69). In the "routine TDM" arm, dosage recommendations were correctly adopted in 14 patients (median C min: 895 ng/ml), who had fewer unfavorable events (28 %) than the 13 not receiving the advised dosage (77 %; P = 0.03; median C min: 648 ng/ml). CONCLUSIONS This first target concentration intervention trial could not formally demonstrate a benefit of "routine TDM" because of small patient number and surprisingly limited prescriber's adherence to dosage recommendations. Favorable outcomes were, however, found in patients actually elected for target dosing. This study thus shows first prospective indication for TDM being a useful tool to guide drug dosage and shift decisions. The study design and analysis provide an interesting paradigm for future randomized TDM trials on targeted anticancer agents.
Resumo:
The aim of this study was to determine the most informative sampling time(s) providing a precise prediction of tacrolimus area under the concentration-time curve (AUC). Fifty-four concentration-time profiles of tacrolimus from 31 adult liver transplant recipients were analyzed. Each profile contained 5 tacrolimus whole-blood concentrations (predose and 1, 2, 4, and 6 or 8 hours postdose), measured using liquid chromatography-tandem mass spectrometry. The concentration at 6 hours was interpolated for each profile, and 54 values of AUC(0-6) were calculated using the trapezoidal rule. The best sampling times were then determined using limited sampling strategies and sensitivity analysis. Linear mixed-effects modeling was performed to estimate regression coefficients of equations incorporating each concentration-time point (C0, C1, C2, C4, interpolated C5, and interpolated C6) as a predictor of AUC(0-6). Predictive performance was evaluated by assessment of the mean error (ME) and root mean square error (RMSE). Limited sampling strategy (LSS) equations with C2, C4, and C5 provided similar results for prediction of AUC(0-6) (R-2 = 0.869, 0.844, and 0.832, respectively). These 3 time points were superior to C0 in the prediction of AUC. The ME was similar for all time points; the RMSE was smallest for C2, C4, and C5. The highest sensitivity index was determined to be 4.9 hours postdose at steady state, suggesting that this time point provides the most information about the AUC(0-12). The results from limited sampling strategies and sensitivity analysis supported the use of a single blood sample at 5 hours postdose as a predictor of both AUC(0-6) and AUC(0-12). A jackknife procedure was used to evaluate the predictive performance of the model, and this demonstrated that collecting a sample at 5 hours after dosing could be considered as the optimal sampling time for predicting AUC(0-6).
Resumo:
Background: Renal transplant recipients were noted to appear cushingoid while on low doses of steroid as part of a triple therapy immunosuppression of cyclosporin A (CsA), prednisolone, and azathioprine. Methods: The study group comprised adult renal transplant recipients with stable graft function who had received their renal allograft a minimum of 1 year previously (43 studies undertaken in 22 men and 20 women) with median daily prednisone dose of 7 mg (range 3-10). The control group was healthy nontransplant subjects [median dose 10 mg (10-30)]. Prednisolone bioavailability was measured using a limited 6-hour area under the curve (AUC), with prednisolone measured using specific HPLC assay. Results: The median prednisolone AUC/mg dose for all transplant recipients was significantly greater than the control group by approximately 50% (316 nmol(.)h/L/mg prednisolone versus 218). AUC was significantly higher in female recipients (median 415 versus 297 for men) and in recipients receiving cyclospotin (348 versus 285). The highest AUC was in women on estrogen supplements who were receiving cyclosporin (median 595). A significantly higher proportion of patients on triple therapy had steroid side effects compared with those on steroid and azathioprine (17/27 versus 4/15), more women than men had side effects (14/16 versus 7/22), and the AUC/mg prednisone was greater in those with side effects than without (median 377 versus 288 nmol-h/L/mg). Discussion: The results are consistent with the hypothesis that CsA increases the bioavailability of prednisolone, most likely through inhibition of beta-glycoprotein. The increased exposure to steroid increased the side-effect profile of steroids in the majority of patients. Because the major contributor to AUC is the maximum postdose concentration, it may be possible to use single-point monitoring (2 hours postdose) for routine clinical studies.
Resumo:
Objectives: Cyclosporin is an immunosuppressant drug with a narrow therapeutic window. Trough and 2-h post-dose blood samples are currently used for therapeutic drug monitoring in solid organ transplant recipients. The aim of the current study was to develop a rapid HPLC-tandem mass spectrometry (HPLC-MS) method for the measurement of cyclosporin in whole blood that was not only suitable for the clinical setting but also considered a reference method. Methods: Blood samples (50 mu L) were prepared by protein precipitation followed by C-18 solid-phase extraction while using d(12) cyclosporin as the internal standard. Mass spectrometric detection was by selected reaction monitoring with an electrospray interface in positive ionization mode. Results: The assay was linear from 10 to 2000 mu g/L (r(2) > 0.996, n = 9). Inter-day,analytical recovery and imprecision using whole blood quality control samples at 10, 30, 400, 1500, and 2000 mu g/L were 94.9-103.5% and
Resumo:
Lamotrigine concentrations were measured simultaneously (as far as was feasible) in stimulated and unstimulated saliva samples, and in plasma, from seven adult volunteers over a 32 h period following a single 50 mg dose of the drug, and in 20 children and adolescents during the course of routine antiepileptic therapy. In individuals there was a close correlation between the measurements at least 2 It after ingestion of the drug. Concentrations in stimulated and unstimulated saliva were similar; the stimulation produced little change in the saliva secretion rate. The saliva-to-plasma concentration ratio increased linearly by 0.78% for each 1 mg/L plasma lamotrigine concentration, with a mean value of 48.8% at a plasma lamotrigine concentration of 10 mg/L. With appropriate precautions as to the timing of saliva collections, and a single plasma lamotrigine concentration measurement to calibrate the salivary values in the individual, salivary lamotrigine concentration measurement appears to be a practicable approach to therapeutic drug monitoring. This has significant implications for the elucidation of the pharmacokinetics of lamotrigine in the paediatric population.
Resumo:
This paper examines population trends in morphine prescriptions in Australia, and contrasts them with findings from annual surveys with regular injecting drug users (IDU). Data on morphine prescriptions from 1995 to 2003 were obtained from the Drug Monitoring System (DRUMS) run by the Australian Government Department of Health and Ageing. Data collected from regular IDU as part of the Australian Illicit Drug Reporting System (IDRS) were analysed (2001-2004). The rate of morphine prescription per person aged 15-54 years increased by 89% across Australia between 1995 and 2003 (from 46.3 to 85.9 mg per person). Almost half (46%) of IDU surveyed in 2004 reported illicit morphine use, with the highest rates in jurisdictions where heroin was less available. Recent morphine injectors were significantly more likely to be male, unemployed, out of treatment and homeless in comparison to IDU who had not injected morphine. They were also more likely to have injected other pharmaceutical drugs and to report injection related problems. Among those who had injected morphine recently, the most commonly reported injecting harms were morphine dependence (38%), difficulty finding veins into which to inject (36%) and scarring or bruising (27%). Morphine use and injection is a common practice among regular IDU in Australia. In some cases, morphine may be a substitute for illicit heroin; in others, it may be being used to treat heroin dependence where other pharmacotherapies, such as methadone and buprenorphine, are perceived as being unavailable or undesirable by IDU. Morphine injection appears to be associated with polydrug use, and with it, a range of problems related to drug injection. Further research is required to monitor and reduce morphine diversion and related harms by such polydrug injectors.
Resumo:
Nanorap is a new nanotechnological formulation for topical anesthesia composed of lidocaine (2.5%) and prilocaine (2.5%). The present study evaluated the pharmacokinetics (PK) of Nanorap. For the determination of lidocaine and prilocaine in human plasma a new method using high-performance liquid-chromatography coupled to tandem mass spectrometry was developed. Nanorap pharmacodynamic (PD) and its physical proprieties were also evaluated. Nanorap was administered by topical application of 2g to healthy volunteers and blood samples were collected for the PK analysis. The drugs were extracted from plasma by liquid-liquid extraction with ether/hexane (80/20, v/v). The chromatography separation was performed on a Genesis C18 analytical column 4 µm (100 x 2.1 mm i.d.) with a mobile phase of methanol/acetonitrile/water (40/30/30, for lidocaine, and 50/30/20, for prilocaine, v/v/v) + 2 mM of ammonium acetate and ropivacaine as internal standard. The drugs were quantified using a mass spectrometer with an electrospray source in the ESI positive mode (ES+) configured for multiple reaction monitoring. The PD of Nanorap was evaluated with the use of a visual analogue scale. Nanorap was characterized by cryofracture. The chromatography run time was 5.5 min for lidocaine and 3.3 min for prilocaine and the lower limit of quantification was 0.05 ng/mL for both drugs. Mean Cmax was 6.62 and 1.72 ng/mL for lidocaine and prilocaine, respectively. Median Tmax was 6.5 hours for both drugs. Nanocapsules had a mean size of 88nm and mean drug association of 92.5% and 89% for lidocaine and prilocaine, respectively. The PD study showed that Nanorap has a sufficient analgesic effect (>30% reduction in pain) after 10 minutes of application. A new simple, selective and sensitive method for determination of lidocaine and prilocaine in human plasma was developed. Nanorap generated safe plasma levels of the drugs and satisfactory analgesic effect.
Resumo:
A sensitive and reproducible stir bar-sorptive extraction and high-performance liquid chromatography-UV detection (SBSE/HPLC-UV) method for therapeutic drug monitoring of carbamazepine, carbamazepine-10,11-epoxide, phenytoin and phenobarbital in plasma samples is described and compared with a liquid:liquid extraction (LLE/HPLC-UV) method. Important factors in the optimization of SBSE efficiency such as pH, extraction time and desorption conditions (solvents, mode magnetic stir, mode ultrasonic stir, time and number of steps) assured recoveries ranging from 72 to 86%, except for phenytoin (62%). Separation was obtained using a reverse phase C-18 column with UV detection (210 nm). The mobile phase consisted of water: acetonitrile (78:22, v/v). The SBSE/HPLC-UV method was linear over a working range of 0.08-40.0 mu g mL(-1) for carbamazepine, carbamazepine-10,11-epoxide and phenobarbital and 0.125-40.0 mu g mL(-1) for phenytoin, The intra-assay and inter-assay precision and accuracy were studied at three concentrations (1.0, 4.0 and 20.0 mu g mL(-1)). The intra-assay coefficients of variation (CVs) for all compounds were less than 8.8% and all inter-CVs were less than 10%. Limits of quantification were 0.08 mu g mL(-1) for carbamazepine, carbamazepine-10,11-epoxide and phenobarbital and 0.125 mu g mL(-1) for phenytoin. No interference of the drugs normally associated with antiepileptic drugs was observed. Based on figures of merit results, the SBSE/HPLC-UV proved adequate for antiepileptic drugs analyses from therapeutic levels. This method was successfully applied to the analysis of real samples and was as effective as the LLE/HPLC-UV method. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A sensitive and reproducible stir bar-sorptive extraction and high performance liquid chromatography-UV detection (SBSE/HPLC-UV) method for therapeutic drug monitoring of rifampicin in plasma samples is described and compared with a liquid:liquid extraction (LLE/HPLC-UV) method. This miniaturized method can result in faster analysis, higher sample throughput, lower solvent consumption and less workload per sample while maintaining or even improving sensitivity. Important factors in the optimization of SBSE efficiency such as pH, temperature, extraction time and desorption conditions (solvents, mode magnetic stir, mode ultrasonic stir, time and number of steps) were optimized recoveries ranging from 75 to 80%. Separation was obtained using a reverse phase C(8) column with UV detection (254 nm). The mobile phase consisted of methanol:0.25 N sodium acetate buffer, pH 5.0 (58:42, v/v). The SBSE/HPLC-UV method was linear over a working range of 0.125-50.0 mu g mL(-1). The intra-assay and inter-assay precision and accuracy were studied at three concentrations (1.25, 6.25 and 25.0 mu g mL(-1)). The intra-assay coefficients of variation (CVs) for all compounds were less than 10% and all inter-CVs were less than 10%. Limits of quantification were 0.125 mu g mL(-1). Stability studies showed rifampicin was stable in plasma for 12 h after thawing; the samples were also stable for 24 h after preparation. Based on the figures of merit results, the SBSE/HPLC-UV proved to be adequate to the rifampicin analyses from therapeutic to toxic levels. This method was successfully applied to the analysis of real samples and was as effective as the LLE/HPLC-UV method. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A sensitive and automated method is described for determination of rifampicin in plasma samples for therapeutic drug monitoring by in-tube solid-phase microextraction coupled with liquid chromatography (in-tube SPME/LC). Important factors in the optimization of in-tube SPME are discussed, such as coating type, sample pH, sample draw/eject volume, number of draw/eject cycles, and draw/eject flow rate. Analyte pre-concentrated in the polyethylene glycol phase was directly transferred to the liquid chromatographic column by percolation of the mobile phase, without carryover. The method was linear over the 0.1-100 mu g/mL range, with a linear coefficient value (r(2)) of 0.998. The inter-assay precision presented coefficient of variation <= 1.7%. The effectiveness and practicability of the proposed method are proven by analysis of plasma samples from ageing patients undergoing therapy with rifampicin. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Methotrexate is eliminated almost entirely by the kidneys. The risk of methotrexate toxicity is therefore increased in patients with poor renal function, most likely as a result of drug accumulation. Declining renal function with age may thus be an important predictor of toxicity to methotrexate. Up to 60% of all patients who receive methotrexate for rheumatoid arthritis (RA) discontinue taking it because of adverse effects, most of which occur during the first year of therapy. Gastrointestinal complications are the most common adverse effects of methotrexate, but hepatotoxicity, haematological toxicity, pulmonary toxicity, lymphoproliferative disorders and exacerbation of rheumatic nodules have all been reported, Decreased renal function as a result of disease and/or aging appears to be an important determinant of hepatic, lymphoproli ferative and haematological toxicity, Concomitant use of low doses of folic acid has been recommended as an approach to limiting toxicity. Interactions between methotrexate and several nonsteroidal anti-inflammatory drugs have been reported, but they may not be clinically significant. However, caution is advised in the use of such combinations in patients with reduced renal function. More serious toxicities (e.g. pancytopenia) may result when other inhibitors of folate utilisation [e.g. cotrimoxazole (trimethoprim-sulfamethoxazole)] or inhibitors of renal tubular secretion (e.g. probenecid) are combined with methotrexate. Before starting low dose methotrexate therapy in patients with RA, a full blood count, liver function tests, renal function tests and chest radiography should be performed. Blood counts and liver function tests should be repeated at regular intervals. Therapeutic drug monitoring of methotrexate has also been suggested as a means of limiting toxicity. Patients with RA usually respond very favourably to low dose methotrexate therapy, and the probability of patients continuing their treatment beyond 5 years is greater than for other slow-acting antirheumatic drugs. Thus, given its sustained clinical utility and relatively predictable toxicity profile, low dose methotrexate is a useful addition to the therapy of RA.
Resumo:
Background. A retrospective analysis was performed on adult renal transplant recipients to evaluate the relationship between tacrolimus trough concentrations and the development of rejection in the first month after transplant. Methods. A total of 349 concentrations from 29 patients, measured by enzyme-linked immunosorbent assay (ELISA), were recorded. Based on an increased serum creatinine, 12 patients were considered to have organ rejection. Rejection was confirmed by biopsy in five of these. The median trough concentration of tacrolimus over the first month of therapy, or until the time of first rejection was compared in rejecters vs non-rejecters. Results. Median trough concentrations of tacrolimus were found to be lower in biopsy-proven rejecters vs non-rejecters (P=0.03) and all rejecters vs nonrejecters (P = 0.04). The average median concentration (+/- SD) in the biopsy-proven rejecter group was 5.09 +/-1.16 ng/ml, compared to 9.20 +/-3.52 ng/ml in the non-rejecter group. After exclusion of an outlier, the average median concentration in all rejecters was 5.57 +/-1.47 ng/rnl, compared with 9.20 +/-3.52 ng/ml in non-rejecters. A rejection rate of 55% was found for patients with a median trough concentration between 0 and 10 ng/ml. This compared with no observed rejection in patients with a median concentration between 10 and 15 ng/ml. Conclusion. A significant relationship exists between organ rejection and median tacrolimus trough concentrations in the first month post-transplant, with patients displaying low concentrations more likely to reject. In order to minimize rejection in the first month after renal transplantation, trough concentrations greater than 10 ng/ml must be achieved.
Resumo:
This study compared an enzyme-linked immunosorbent assay (ELISA) to a liquid chromatography-tandem mass spectrometry (LC/MS/MS) technique for measurement of tacrolimus concentrations in adult kidney and liver transplant recipients, and investigated how assay choice influenced pharmacokinetic parameter estimates and drug dosage decisions. Tacrolimus concentrations measured by both ELISA and LC/MS/MS from 29 kidney (n = 98 samples) and 27 liver (n = 97 samples) transplant recipients were used to evaluate the performance of these methods in the clinical setting. Tacrolimus concentrations measured by the two techniques were compared via regression analysis. Population pharmacokinetic models were developed independently using ELISA and LC/MS/MS data from 76 kidney recipients. Derived kinetic parameters were used to formulate typical dosing regimens for concentration targeting. Dosage recommendations for the two assays were compared. The relation between LC/MS/MS and ELISA measurements was best described by the regression equation ELISA = 1.02 . (LC/MS/MS) + 0.14 in kidney recipients, and ELISA = 1.12 . (LC/MS/MS) - 0.87 in liver recipients. ELISA displayed less accuracy than LC/MS/MS at lower tacrolimus concentrations. Population pharmacokinetic models based on ELISA and LC/MS/MS data were similar with residual random errors of 4.1 ng/mL and 3.7 ng/mL, respectively. Assay choice gave rise to dosage prediction differences ranging from 0% to 30%. ELISA measurements of tacrolimus are not automatically interchangeable with LC/MS/MS values. Assay differences were greatest in adult liver recipients, probably reflecting periods of liver dysfunction and impaired biliary secretion of metabolites. While the majority of data collected in this study suggested assay differences in adult kidney recipients were minimal, findings of ELISA dosage underpredictions of up to 25% in the long term must be investigated further.