834 resultados para Design and Technology, Professional Development, Curriculum Implementation
Resumo:
The use of Project Based Learning has spread widely over the last decades, not only throughout countries but also among disciplines. One of the most significant characteristics of this methodology is the use of ill-structured problems as central activity during the course, which represents an important difficulty for both teachers and students. This work presents a model, supported by a tool, focused on helping teachers and students in Project Based Learning, overcoming these difficulties. Firstly, teachers are guided in designing the project following the main principles of this methodology. Once the project has been specified at the desired level of depth, the same tool helps students to finish the project specification and organize the implementation. Collaborative work among different users is allowed in both phases. This tool has been satisfactorily tested designing two real projects used in Computer Engineering and Software Engineering degrees.
Resumo:
Over the last few years, the Data Center market has increased exponentially and this tendency continues today. As a direct consequence of this trend, the industry is pushing the development and implementation of different new technologies that would improve the energy consumption efficiency of data centers. An adaptive dashboard would allow the user to monitor the most important parameters of a data center in real time. For that reason, monitoring companies work with IoT big data filtering tools and cloud computing systems to handle the amounts of data obtained from the sensors placed in a data center.Analyzing the market trends in this field we can affirm that the study of predictive algorithms has become an essential area for competitive IT companies. Complex algorithms are used to forecast risk situations based on historical data and warn the user in case of danger. Considering that several different users will interact with this dashboard from IT experts or maintenance staff to accounting managers, it is vital to personalize it automatically. Following that line of though, the dashboard should only show relevant metrics to the user in different formats like overlapped maps or representative graphs among others. These maps will show all the information needed in a visual and easy-to-evaluate way. To sum up, this dashboard will allow the user to visualize and control a wide range of variables. Monitoring essential factors such as average temperature, gradients or hotspots as well as energy and power consumption and savings by rack or building would allow the client to understand how his equipment is behaving, helping him to optimize the energy consumption and efficiency of the racks. It also would help him to prevent possible damages in the equipment with predictive high-tech algorithms.
Resumo:
Negli ultimi decenni, le tecnologie e i prodotti informatici sono diventati pervasivi e sono ora una parte essenziale delle nostre vite. Ogni giorno ci influenzano in maniera più o meno esplicita, cambiando il nostro modo di vivere e i nostri comportamenti più o meno intenzionalmente. Tuttavia, i computer non nacquero inizialmente per persuadere: essi furono costruiti per gestire, calcolare, immagazzinare e recuperare dati. Non appena i computer si sono spostati dai laboratori di ricerca alla vita di tutti i giorni, sono però diventati sempre più persuasivi. Questa area di ricerca è chiamata pesuasive technology o captology, anche definita come lo studio dei sistemi informatici interattivi progettati per cambiare le attitudini e le abitudini delle persone. Nonostante il successo crescente delle tecnologie persuasive, sembra esserci una mancanza di framework sia teorici che pratici, che possano aiutare gli sviluppatori di applicazioni mobili a costruire applicazioni in grado di persuadere effettivamente gli utenti finali. Tuttavia, il lavoro condotto dal Professor Helal e dal Professor Lee al Persuasive Laboratory all’interno dell’University of Florida tenta di colmare questa lacuna. Infatti, hanno proposto un modello di persuasione semplice ma efficace, il quale può essere usato in maniera intuitiva da ingegneri o specialisti informatici. Inoltre, il Professor Helal e il Professor Lee hanno anche sviluppato Cicero, un middleware per dispositivi Android basato sul loro precedente modello, il quale può essere usato in modo molto semplice e veloce dagli sviluppatori per creare applicazioni persuasive. Il mio lavoro al centro di questa tesi progettuale si concentra sull’analisi del middleware appena descritto e, successivamente, sui miglioramenti e ampliamenti portati ad esso. I più importanti sono una nuova architettura di sensing, una nuova struttura basata sul cloud e un nuovo protocollo che permette di creare applicazioni specifiche per smartwatch.
Resumo:
This paper presents a critical analysis of the Bachelor of Materials Engineering programme compared with the expectations of the Institution of Engineers Australia (IEAust) and of UQ. To set the scene, the graduate attributes are listed, the programme framework is presented and the educational culture and available facilities are described Then, the programme delivery is described; this includes an analysis of the learning opportunities that allow students to develop the graduate attributes. Finally, an assessment is made of programme outcomes relating to graduate attributes.
Resumo:
This paper reviews the key features of an environment to support domain users in spatial information system (SIS) development. It presents a full design and prototype implementation of a repository system for the storage and management of metadata, focusing on a subset of spatial data integrity constraint classes. The system is designed to support spatial system development and customization by users within the domain that the system will operate.
Resumo:
The Undergraduate Site Learning Program (USLP) is an innovative work-based learning program that addresses the call to develop a broader set ofattributes in engineering graduates. Unlike cooperative education programs, site learning can give students full academic credit for their placement without extending the duration of the degree through the use of an innovative learning alignment model. A cenrralpart ofthis program is a unique course entitled Professional Development in which students articulate and reflect upon the lessons they leom while on placement in industry. Students spend the bulk ofa semester on-site often in remote locations, which requires a flexible approach to course operation and fosters independent learning. Thus the USLP challenges both staff and students and produces outcomes that bofh the alumni and industry value.
Resumo:
The primary goal of this research is to design and develop an education technology to support learning in global operations management. The research implements a series of studies to determine the right balance among user requirements, learning methods and applied technologies, on a view of student-centred learning. This research is multidisciplinary by nature, involving topics from various disciplines such as global operations management, curriculum and contemporary learning theory, and computer aided learning. Innovative learning models that emphasise on technological implementation are employed and discussed throughout this research.
Resumo:
The last decade or so has witnessed the emergence of the national innovation system (NIS) phenomenon. Since then, many scholars have investigated NIS and its implementation in different countries. However, there are very few investigations into the relationship between the NIS of a country and its national innovation capacity. This paper aims to make a contribution in this area by examining the link that currently exists between these two topics. Whilst examining this relationship, we also explore internationalisation and technology transfer, being cognate areas that have been investigated during the same period. This follows our assertion that the link between NIS and national innovation capacity is the mechanism of internationalisation and technology transfer. The NIS approach was introduced in the late 1980s (see Freeman, 1987; Dosi et al., 1988) and further elaborated later (see Lundvall, 1992; Nelson, 1993; Edquist, 1997). In essence, a country?s NIS is a historically grown subsystem of the entire national economy consisting of organisations and institutions which play a major role in the innovative activity in the country. In the NIS approach, interactions within organisations as well as the interplay between organisations and institutions are of central importance. The NIS approach has been used to reveal the structure of the innovation processes and the main actors involved in them in industrialised and emerging countries. Although the national focus remains strong, it has been accompanied by studies seeking to analyse the notion of systems of innovation at an international level and at a sub-national scale (Archibugi et al., 1999). Dosi in the edition of Archibugi et al. (1999) argues that the general background of the discussion of national systems is the observation of non-random distributions across countries of: corporate capabilities; organisational forms; strategies; and ultimately revealed performances, in terms of production efficiency and inputs productivities, rates of innovation, rates of adoption/diffusion of innovation themselves, dynamics of market shares on the world markets, growth of income and employment. They also mention that there are several approaches to NIS. Nelson (1993) focuses upon the specificities of national institutions and policies supporting directly or indirectly innovation, diffusion and skills accumulation. Patel and Pavitt (1991) have stressed the links between the national patterns of technological accumulation and the competencies and innovative strategies of a few major national companies. Amable et al (1997) and Soskice (1993) and Zysman (1994) focus on the specifics of national institutions including, for example, the forms of organization, financial and labour markets, training institutions, forms of state intervention in the economy etc. However, the most common reference is by Lundvall (1992) who argues that the focus on the national level is associated with the fact that national economies vary according to their production system and their institutional framework and these differences are in turn strengthened by different historical experiences, language and culture. On the other hand, the national innovation capability consists of abilities to create and carry new technological possibilities through to economic practice. The term covers a wide range of activities from capability to invent to capability to innovate and to capability to improve existing technology beyond the original design parameters (Kim, 1997). The term innovation is often associated by many with technological change at international frontiers. However, technological capability is not the same as innovation capability. Technological capability refers to assimilation, use, adaptation, and change to existing technologies. It also enables the creation of new technologies and development of new products and processes in response to changing economic environments. It denotes operational command over knowledge (Kim, 1997). It is manifested not merely by the knowledge possessed, but, more important, by the uses to which that knowledge can be put and by the proficiency with which it is applied in the activities of investment and production and in the creation of new knowledge (Westphal et al., 1985). Therefore, the analytical framework that is used in this paper is based on the way a country derives from its NIS a national innovation capacity. There are two perspectives that are identified on this way. These are internationalisation and technology transfer. Even though NIS is not directly related to national innovation capacity, to achieve national innovation capacity from NIS, the country should have the ability for technology transfer. Technology transfer is a link between these two phenomena. On the other hand, internationalisation can be either the input or the output of the relationship between NIS and national innovation capability. If a company is investing in a country because of its national innovation capacity, this can be regarded as an input to the relationship between NIS and national innovation capacity. If this company is investigating the national innovation capacity of a country then, for its internationalisation, the national innovation capacity should be important, which in turn means this company is active in innovation and innovation is also an important success factor. The interrelationship between the investment of the company and the NIS of the country (assuming that the country is competent and competitive in technology transfer) will generate and improve that country?s national innovation capacity. This is the output of internationalisation from the relationship between NIS and national innovation capacity. When companies are evaluating whether to internationalise, they investigate certain factors in the countries in which they are considering to invest. The ability to transfer technology is dependent on ability to adopt a new technology and also on the learning derived from this technology. If countries wish to attract innovation related investment they need to show their ability to have a NIS and also the capability to transfer technology. Without the technology transfer capability, the NIS is not functioning. Therefore, companies that internationalise will investigate the factors common to NIS, technology transfer, and their business needs. Through this paper we will demonstrate this link though its mechanisms. Our research will be through extensive literature review and identifying relevant aspects of previous research carried out by the authors. It will investigate certain factors of different countries that are successful in attracting innovation related foreign direct investment. Through these, we will point out the factors that are important for the link and mechanisms of NIS and national innovation capability.
Resumo:
The development of increasingly powerful computers, which has enabled the use of windowing software, has also opened the way for the computer study, via simulation, of very complex physical systems. In this study, the main issues related to the implementation of interactive simulations of complex systems are identified and discussed. Most existing simulators are closed in the sense that there is no access to the source code and, even if it were available, adaptation to interaction with other systems would require extensive code re-writing. This work aims to increase the flexibility of such software by developing a set of object-oriented simulation classes, which can be extended, by subclassing, at any level, i.e., at the problem domain, presentation or interaction levels. A strategy, which involves the use of an object-oriented framework, concurrent execution of several simulation modules, use of a networked windowing system and the re-use of existing software written in procedural languages, is proposed. A prototype tool which combines these techniques has been implemented and is presented. It allows the on-line definition of the configuration of the physical system and generates the appropriate graphical user interface. Simulation routines have been developed for the chemical recovery cycle of a paper pulp mill. The application, by creation of new classes, of the prototype to the interactive simulation of this physical system is described. Besides providing visual feedback, the resulting graphical user interface greatly simplifies the interaction with this set of simulation modules. This study shows that considerable benefits can be obtained by application of computer science concepts to the engineering domain, by helping domain experts to tailor interactive tools to suit their needs.
Resumo:
The present scarcity of operational knowledge-based systems (KBS) has been attributed, in part, to an inadequate consideration shown to user interface design during development. From a human factors perspective the problem has stemmed from an overall lack of user-centred design principles. Consequently the integration of human factors principles and techniques is seen as a necessary and important precursor to ensuring the implementation of KBS which are useful to, and usable by, the end-users for whom they are intended. Focussing upon KBS work taking place within commercial and industrial environments, this research set out to assess both the extent to which human factors support was presently being utilised within development, and the future path for human factors integration. The assessment consisted of interviews conducted with a number of commercial and industrial organisations involved in KBS development; and a set of three detailed case studies of individual KBS projects. Two of the studies were carried out within a collaborative Alvey project, involving the Interdisciplinary Higher Degrees Scheme (IHD) at the University of Aston in Birmingham, BIS Applied Systems Ltd (BIS), and the British Steel Corporation. This project, which had provided the initial basis and funding for the research, was concerned with the application of KBS to the design of commercial data processing (DP) systems. The third study stemmed from involvement on a KBS project being carried out by the Technology Division of the Trustees Saving Bank Group plc. The preliminary research highlighted poor human factors integration. In particular, there was a lack of early consideration of end-user requirements definition and user-centred evaluation. Instead concentration was given to the construction of the knowledge base and prototype evaluation with the expert(s). In response to this identified problem, a set of methods was developed that was aimed at encouraging developers to consider user interface requirements early on in a project. These methods were then applied in the two further projects, and their uptake within the overall development process was monitored. Experience from the two studies demonstrated that early consideration of user interface requirements was both feasible, and instructive for guiding future development work. In particular, it was shown a user interface prototype could be used as a basis for capturing requirements at the functional (task) level, and at the interface dialogue level. Extrapolating from this experience, a KBS life-cycle model is proposed which incorporates user interface design (and within that, user evaluation) as a largely parallel, rather than subsequent, activity to knowledge base construction. Further to this, there is a discussion of several key elements which can be seen as inhibiting the integration of human factors within KBS development. These elements stem from characteristics of present KBS development practice; from constraints within the commercial and industrial development environments; and from the state of existing human factors support.
Resumo:
OBJECTIVES: The objective of this research was to design a clinical decision support system (CDSS) that supports heterogeneous clinical decision problems and runs on multiple computing platforms. Meeting this objective required a novel design to create an extendable and easy to maintain clinical CDSS for point of care support. The proposed solution was evaluated in a proof of concept implementation. METHODS: Based on our earlier research with the design of a mobile CDSS for emergency triage we used ontology-driven design to represent essential components of a CDSS. Models of clinical decision problems were derived from the ontology and they were processed into executable applications during runtime. This allowed scaling applications' functionality to the capabilities of computing platforms. A prototype of the system was implemented using the extended client-server architecture and Web services to distribute the functions of the system and to make it operational in limited connectivity conditions. RESULTS: The proposed design provided a common framework that facilitated development of diversified clinical applications running seamlessly on a variety of computing platforms. It was prototyped for two clinical decision problems and settings (triage of acute pain in the emergency department and postoperative management of radical prostatectomy on the hospital ward) and implemented on two computing platforms-desktop and handheld computers. CONCLUSIONS: The requirement of the CDSS heterogeneity was satisfied with ontology-driven design. Processing of application models described with the help of ontological models allowed having a complex system running on multiple computing platforms with different capabilities. Finally, separation of models and runtime components contributed to improved extensibility and maintainability of the system.
Resumo:
Small indigenous manufacturers of electronic equipment are coming under increasingly severe pressure to adopt a strong defensive position against large multinational and Far Eastern companies. A common response to this threat has been for these firms to adopt a 'market driven' business strategy based on quality and customer service, rather than a 'technology led' strategy which uses technical specification and price to compete. To successfully implement this type of strategy there is a need for production systems to be redesigned to suit the new demands of marketing. Increased range and fast response require economy of scope rather t ban economy or scale while the organisation's culture must promote quality and process consciousness. This paper describes the 'Modular Assembly Cascade' concept which addresses these needs by applying the principles of flexible manufacturing (FMS) and just in time (,JlT) to electronics assembly. A methodology for executing the concept is also outlined. This is called DRAMA (Design Houtirw !'or· Adopting Modular Assembly).
Resumo:
Information technology companies are having to broaden their overall strategic view in deference to the premise that it is better to be market-driven than technology-led. Cost and technical performance are no longer the only considerations, as quality and service now demand equal recognition. The production of a high volume single item has given way to that of low volume multiple items, which in turn requires some modification of production systems and brings flexible manufacturing, Just-in-Time production and total quality control into sharper focus for the achievement of corporate objectives.