975 resultados para Deformable image registration
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
Visual correspondence is a key computer vision task that aims at identifying projections of the same 3D point into images taken either from different viewpoints or at different time instances. This task has been the subject of intense research activities in the last years in scenarios such as object recognition, motion detection, stereo vision, pattern matching, image registration. The approaches proposed in literature typically aim at improving the state of the art by increasing the reliability, the accuracy or the computational efficiency of visual correspondence algorithms. The research work carried out during the Ph.D. course and presented in this dissertation deals with three specific visual correspondence problems: fast pattern matching, stereo correspondence and robust image matching. The dissertation presents original contributions to the theory of visual correspondence, as well as applications dealing with 3D reconstruction and multi-view video surveillance.
Resumo:
In den westlichen Industrieländern ist das Mammakarzinom der häufigste bösartige Tumor der Frau. Sein weltweiter Anteil an allen Krebserkrankungen der Frau beläuft sich auf etwa 21 %. Inzwischen ist jede neunte Frau bedroht, während ihres Lebens an Brustkrebs zu erkranken. Die alterstandardisierte Mortalitätrate liegt derzeit bei knapp 27 %.rnrnDas Mammakarzinom hat eine relative geringe Wachstumsrate. Die Existenz eines diagnostischen Verfahrens, mit dem alle Mammakarzinome unter 10 mm Durchmesser erkannt und entfernt werden, würden den Tod durch Brustkrebs praktisch beseitigen. Denn die 20-Jahres-Überlebungsrate bei Erkrankung durch initiale Karzinome der Größe 5 bis 10 mm liegt mit über 95 % sehr hoch.rnrnMit der Kontrastmittel gestützten Bildgebung durch die MRT steht eine relativ junge Untersuchungsmethode zur Verfügung, die sensitiv genug zur Erkennung von Karzinomen ab einer Größe von 3 mm Durchmesser ist. Die diagnostische Methodik ist jedoch komplex, fehleranfällig, erfordert eine lange Einarbeitungszeit und somit viel Erfahrung des Radiologen.rnrnEine Computer unterstützte Diagnosesoftware kann die Qualität einer solch komplexen Diagnose erhöhen oder zumindest den Prozess beschleunigen. Das Ziel dieser Arbeit ist die Entwicklung einer vollautomatischen Diagnose Software, die als Zweitmeinungssystem eingesetzt werden kann. Meines Wissens existiert eine solche komplette Software bis heute nicht.rnrnDie Software führt eine Kette von verschiedenen Bildverarbeitungsschritten aus, die dem Vorgehen des Radiologen nachgeahmt wurden. Als Ergebnis wird eine selbstständige Diagnose für jede gefundene Läsion erstellt: Zuerst eleminiert eine 3d Bildregistrierung Bewegungsartefakte als Vorverarbeitungsschritt, um die Bildqualität der nachfolgenden Verarbeitungsschritte zu verbessern. Jedes kontrastanreichernde Objekt wird durch eine regelbasierte Segmentierung mit adaptiven Schwellwerten detektiert. Durch die Berechnung kinetischer und morphologischer Merkmale werden die Eigenschaften der Kontrastmittelaufnahme, Form-, Rand- und Textureeigenschaften für jedes Objekt beschrieben. Abschließend werden basierend auf den erhobenen Featurevektor durch zwei trainierte neuronale Netze jedes Objekt in zusätzliche Funde oder in gut- oder bösartige Läsionen klassifiziert.rnrnDie Leistungsfähigkeit der Software wurde auf Bilddaten von 101 weiblichen Patientinnen getested, die 141 histologisch gesicherte Läsionen enthielten. Die Vorhersage der Gesundheit dieser Läsionen ergab eine Sensitivität von 88 % bei einer Spezifität von 72 %. Diese Werte sind den in der Literatur bekannten Vorhersagen von Expertenradiologen ähnlich. Die Vorhersagen enthielten durchschnittlich 2,5 zusätzliche bösartige Funde pro Patientin, die sich als falsch klassifizierte Artefakte herausstellten.rn
Resumo:
PURPOSE : For the facilitation of minimally invasive robotically performed direct cochlea access (DCA) procedure, a surgical planning tool which enables the surgeon to define landmarks for patient-to-image registration, identify the necessary anatomical structures and define a safe DCA trajectory using patient image data (typically computed tomography (CT) or cone beam CT) is required. To this end, a dedicated end-to-end software planning system for the planning of DCA procedures that addresses current deficiencies has been developed. METHODS : Efficient and robust anatomical segmentation is achieved through the implementation of semiautomatic algorithms; high-accuracy patient-to-image registration is achieved via an automated model-based fiducial detection algorithm and functionality for the interactive definition of a safe drilling trajectory based on case-specific drill positioning uncertainty calculations was developed. RESULTS : The accuracy and safety of the presented software tool were validated during the conduction of eight DCA procedures performed on cadaver heads. The plan for each ear was completed in less than 20 min, and no damage to vital structures occurred during the procedures. The integrated fiducial detection functionality enabled final positioning accuracies of [Formula: see text] mm. CONCLUSIONS : Results of this study demonstrated that the proposed software system could aid in the safe planning of a DCA tunnel within an acceptable time.
Resumo:
This paper addresses the problem of estimating postoperative cup alignment from single standard X-ray radiograph with gonadal shielding. The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior radiograph is known inaccurate, largely due to the wide variability in individual pelvic position relative to X-ray plate. 2D-3D image registration methods have been introduced to estimate the rigid transformation between a preoperative CT volume and postoperative radiograph(s) for an accurate estimation of the postoperative cup alignment relative to an anatomical reference extracted from the CT data. However, these methods require either multiple radiographs or a radiograph-specific calibration, both of which are not avaiable for most retrospective studies. Furthermore, these methods were only evaluated on X-ray radiograph(s) without gonadal shielding. In this paper, we propose to use a hybrid 2D-3D registration scheme combining an iterative landmark-to-ray registration with a 2D-3D intensity-based registration to estimate the rigid transfromation for a precise estimation of cup alignment. Quantitative and qualitative results evaluated on clinical and cadaveric datasets are given which indicate the validity of our approach.
Resumo:
The application of image-guided systems with or without support by surgical robots relies on the accuracy of the navigation process, including patient-to-image registration. The surgeon must carry out the procedure based on the information provided by the navigation system, usually without being able to verify its correctness beyond visual inspection. Misleading surrogate parameters such as the fiducial registration error are often used to describe the success of the registration process, while a lack of methods describing the effects of navigation errors, such as those caused by tracking or calibration, may prevent the application of image guidance in certain accuracy-critical interventions. During minimally invasive mastoidectomy for cochlear implantation, a direct tunnel is drilled from the outside of the mastoid to a target on the cochlea based on registration using landmarks solely on the surface of the skull. Using this methodology, it is impossible to detect if the drill is advancing in the correct direction and that injury of the facial nerve will be avoided. To overcome this problem, a tool localization method based on drilling process information is proposed. The algorithm estimates the pose of a robot-guided surgical tool during a drilling task based on the correlation of the observed axial drilling force and the heterogeneous bone density in the mastoid extracted from 3-D image data. We present here one possible implementation of this method tested on ten tunnels drilled into three human cadaver specimens where an average tool localization accuracy of 0.29 mm was observed.
Resumo:
Purpose: First, to determine an average and maximum displacement of the shoulder relative to isocenter over the course of treatment. Second, to establish the dosimetric effect of shoulder displacements relative to correct isocenter alignment on the dose delivered to the target and the surrounding structures for head and neck cancer patients. Method and Materials: The frequency of shoulder shifts of various magnitudes relative to isocenter was assessed for 4 patients using image registration software. The location of the center of the right and left humeral head relative to isocenter (usually C2) was found daily from CT on rails scans, and was compared to the location of the humeral heads relative to isocenter on the initial simulation CT. Three Baseline head and neck IMRT and SmartArc plans were generated in Pinnacle based on simulation CTs. The CT datasets (external contour and boney structures) were then modified to represent shifts of the shoulder (relative to isocenter) between 3 mm and 15 mm in the SI, AP, and LR directions. The initial plans were recalculated on the image sets with shifted shoulders. Results: On average, shoulder variation was 2-5 mm in each direction, although displacements of over 1 cm in the inferior and posterior directions occurred. Shoulder shifts induced perturbations in the dose distribution, although generally only for large shifts. Most substantially, large, superior shifts resulted in coverage loss by the 95% isodose line for targets in the lower neck. Inferior shifts elevated the dose to the brachial plexus by 0.6-4.1 Gy. SmartArc plans showed similar loss of target coverage as IMRT plans. Conclusions: The position of the shoulder can have an impact on target coverage and critical structure dose. Shoulder position may need to be considered for setup of head and neck patients depending on target location.
Resumo:
In this work, we present a novel method to compensate the movement in images acquired during free breathing using first-pass gadolinium enhanced, myocardial perfusion magnetic resonance imaging (MRI). First, we use independent component analysis (ICA) to identify the optimal number of independent components (ICs) that separate the breathing motion from the intensity change induced by the contrast agent. Then, synthetic images are created by recombining the ICs, but other then in previously published work (Milles et al. 2008), we omit the component related to motion, and therefore, the resulting reference image series is free of motion. Motion compensation is then achieved by using a multi-pass non-rigid image registration scheme. We tested our method on 15 distinct image series (5 patients) consisting of 58 images each and we validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration. The average correlation to the manually obtained curves before registration 0:89 0:11 was increased to 0:98 0:02
Resumo:
Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time?frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time?intensity curves from .84 ± .19 before registration to .96 ± .06 after registration
Resumo:
La correcta validación y evaluación de cualquier algoritmo de registro incluido en la línea de procesamiento de cualquier aplicación clínica, es fundamental para asegurar la calidad y fiabilidad de los resultados obtenidos con ellas. Ambas características son imprescindibles, además, cuando dicha aplicación se encuentra en el área de la planificación quirúrgica, en la que las decisiones médicas influyen claramente en la invasividad sobre el paciente. El registro de imágenes es un proceso de alineamiento entre dos o más de éstas de forma que las características comunes se encuentren en el mismo punto del espacio. Este proceso, por tanto, se hace imprescindible en aquellas aplicaciones en las que existe la necesidad de combinar la información disponible en diferentes modalidades (fusión de imágenes) o bien la comparación de imágenes intra-modalidad tomadas de diferentes pacientes o en diferentes momentos. En el presente Trabajo Fin de Máster, se desarrolla un conjunto de herramientas para la evaluación de algoritmos de registro y se evalúan en la aplicación sobre imágenes multimodalidad a través de dos metodologías: 1) el uso de imágenes cuya alineación se conoce a priori a través de unos marcadores fiables (fiducial markers) eliminados de las imágenes antes del proceso de validación; y 2) el uso de imágenes sintetizadas con las propiedades de cierta modalidad de interés, generadas en base a otra modalidad objetivo y cuya des-alineación es controlada y conocida a priori. Para la primera de las metodologías, se hizo uso de un proyecto (RIRE – Retrospective Image Registration Evaluation Project) ampliamente conocido y que asegura la fiabilidad de la validación al realizarse por terceros. En la segunda, se propone la utilización de una metodología de simulación de imágenes SPECT (Single Photon Emission Computed Tomography) a partir de imágenes de Resonancia Magnética (que es la referencia anatómica). Finalmente, se realiza la modularización del algoritmo de registro validado en la herramienta FocusDET, para la localización del Foco Epileptógeno (FE) en Epilepsia parcial intratable, sustituyendo a la versión anterior en la que el proceso de registro se encontraba embebido en dicho software, dificultando enormemente cualquier tarea de revisión, validación o evaluación.
Resumo:
This dissertation develops an image processing framework with unique feature extraction and similarity measurements for human face recognition in the thermal mid-wave infrared portion of the electromagnetic spectrum. The goals of this research is to design specialized algorithms that would extract facial vasculature information, create a thermal facial signature and identify the individual. The objective is to use such findings in support of a biometrics system for human identification with a high degree of accuracy and a high degree of reliability. This last assertion is due to the minimal to no risk for potential alteration of the intrinsic physiological characteristics seen through thermal infrared imaging. The proposed thermal facial signature recognition is fully integrated and consolidates the main and critical steps of feature extraction, registration, matching through similarity measures, and validation through testing our algorithm on a database, referred to as C-X1, provided by the Computer Vision Research Laboratory at the University of Notre Dame. Feature extraction was accomplished by first registering the infrared images to a reference image using the functional MRI of the Brain’s (FMRIB’s) Linear Image Registration Tool (FLIRT) modified to suit thermal infrared images. This was followed by segmentation of the facial region using an advanced localized contouring algorithm applied on anisotropically diffused thermal images. Thermal feature extraction from facial images was attained by performing morphological operations such as opening and top-hat segmentation to yield thermal signatures for each subject. Four thermal images taken over a period of six months were used to generate thermal signatures and a thermal template for each subject, the thermal template contains only the most prevalent and consistent features. Finally a similarity measure technique was used to match signatures to templates and the Principal Component Analysis (PCA) was used to validate the results of the matching process. Thirteen subjects were used for testing the developed technique on an in-house thermal imaging system. The matching using an Euclidean-based similarity measure showed 88% accuracy in the case of skeletonized signatures and templates, we obtained 90% accuracy for anisotropically diffused signatures and templates. We also employed the Manhattan-based similarity measure and obtained an accuracy of 90.39% for skeletonized and diffused templates and signatures. It was found that an average 18.9% improvement in the similarity measure was obtained when using diffused templates. The Euclidean- and Manhattan-based similarity measure was also applied to skeletonized signatures and templates of 25 subjects in the C-X1 database. The highly accurate results obtained in the matching process along with the generalized design process clearly demonstrate the ability of the thermal infrared system to be used on other thermal imaging based systems and related databases. A novel user-initialization registration of thermal facial images has been successfully implemented. Furthermore, the novel approach at developing a thermal signature template using four images taken at various times ensured that unforeseen changes in the vasculature did not affect the biometric matching process as it relied on consistent thermal features.
Resumo:
Introduction Prediction of soft tissue changes following orthognathic surgery has been frequently attempted in the past decades. It has gradually progressed from the classic “cut and paste” of photographs to the computer assisted 2D surgical prediction planning; and finally, comprehensive 3D surgical planning was introduced to help surgeons and patients to decide on the magnitude and direction of surgical movements as well as the type of surgery to be considered for the correction of facial dysmorphology. A wealth of experience was gained and numerous published literature is available which has augmented the knowledge of facial soft tissue behaviour and helped to improve the ability to closely simulate facial changes following orthognathic surgery. This was particularly noticed following the introduction of the three dimensional imaging into the medical research and clinical applications. Several approaches have been considered to mathematically predict soft tissue changes in three dimensions, following orthognathic surgery. The most common are the Finite element model and Mass tensor Model. These were developed into software packages which are currently used in clinical practice. In general, these methods produce an acceptable level of prediction accuracy of soft tissue changes following orthognathic surgery. Studies, however, have shown a limited prediction accuracy at specific regions of the face, in particular the areas around the lips. Aims The aim of this project is to conduct a comprehensive assessment of hard and soft tissue changes following orthognathic surgery and introduce a new method for prediction of facial soft tissue changes. Methodology The study was carried out on the pre- and post-operative CBCT images of 100 patients who received their orthognathic surgery treatment at Glasgow dental hospital and school, Glasgow, UK. Three groups of patients were included in the analysis; patients who underwent Le Fort I maxillary advancement surgery; bilateral sagittal split mandibular advancement surgery or bimaxillary advancement surgery. A generic facial mesh was used to standardise the information obtained from individual patient’s facial image and Principal component analysis (PCA) was applied to interpolate the correlations between the skeletal surgical displacement and the resultant soft tissue changes. The identified relationship between hard tissue and soft tissue was then applied on a new set of preoperative 3D facial images and the predicted results were compared to the actual surgical changes measured from their post-operative 3D facial images. A set of validation studies was conducted. To include: • Comparison between voxel based registration and surface registration to analyse changes following orthognathic surgery. The results showed there was no statistically significant difference between the two methods. Voxel based registration, however, showed more reliability as it preserved the link between the soft tissue and skeletal structures of the face during the image registration process. Accordingly, voxel based registration was the method of choice for superimposition of the pre- and post-operative images. The result of this study was published in a refereed journal. • Direct DICOM slice landmarking; a novel technique to quantify the direction and magnitude of skeletal surgical movements. This method represents a new approach to quantify maxillary and mandibular surgical displacement in three dimensions. The technique includes measuring the distance of corresponding landmarks digitized directly on DICOM image slices in relation to three dimensional reference planes. The accuracy of the measurements was assessed against a set of “gold standard” measurements extracted from simulated model surgery. The results confirmed the accuracy of the method within 0.34mm. Therefore, the method was applied in this study. The results of this validation were published in a peer refereed journal. • The use of a generic mesh to assess soft tissue changes using stereophotogrammetry. The generic facial mesh played a major role in the soft tissue dense correspondence analysis. The conformed generic mesh represented the geometrical information of the individual’s facial mesh on which it was conformed (elastically deformed). Therefore, the accuracy of generic mesh conformation is essential to guarantee an accurate replica of the individual facial characteristics. The results showed an acceptable overall mean error of the conformation of generic mesh 1 mm. The results of this study were accepted for publication in peer refereed scientific journal. Skeletal tissue analysis was performed using the validated “Direct DICOM slices landmarking method” while soft tissue analysis was performed using Dense correspondence analysis. The analysis of soft tissue was novel and produced a comprehensive description of facial changes in response to orthognathic surgery. The results were accepted for publication in a refereed scientific Journal. The main soft tissue changes associated with Le Fort I were advancement at the midface region combined with widening of the paranasal, upper lip and nostrils. Minor changes were noticed at the tip of the nose and oral commissures. The main soft tissue changes associated with mandibular advancement surgery were advancement and downward displacement of the chin and lower lip regions, limited widening of the lower lip and slight reversion of the lower lip vermilion combined with minimal backward displacement of the upper lip were recorded. Minimal changes were observed on the oral commissures. The main soft tissue changes associated with bimaxillary advancement surgery were generalized advancement of the middle and lower thirds of the face combined with widening of the paranasal, upper lip and nostrils regions. In Le Fort I cases, the correlation between the changes of the facial soft tissue and the skeletal surgical movements was assessed using PCA. A statistical method known as ’Leave one out cross validation’ was applied on the 30 cases which had Le Fort I osteotomy surgical procedure to effectively utilize the data for the prediction algorithm. The prediction accuracy of soft tissue changes showed a mean error ranging between (0.0006mm±0.582) at the nose region to (-0.0316mm±2.1996) at the various facial regions.
Resumo:
Abstract: As time has passed, the general purpose programming paradigm has evolved, producing different hardware architectures whose characteristics differ widely. In this work, we are going to demonstrate, through different applications belonging to the field of Image Processing, the existing difference between three Nvidia hardware platforms: two of them belong to the GeForce graphics cards series, the GTX 480 and the GTX 980 and one of the low consumption platforms which purpose is to allow the execution of embedded applications as well as providing an extreme efficiency: the Jetson TK1. With respect to the test applications we will use five examples from Nvidia CUDA Samples. These applications are directly related to Image Processing, as the algorithms they use are similar to those from the field of medical image registration. After the tests, it will be proven that GTX 980 is both the device with the highest computational power and the one that has greater consumption, it will be seen that Jetson TK1 is the most efficient platform, it will be shown that GTX 480 produces more heat than the others and we will learn other effects produced by the existing difference between the architecture of the devices.
Resumo:
At present, many approaches have been proposed for deformable face alignment with varying degrees of success. However, the common drawback to nearly all these approaches is the inaccurate landmark registrations. The registration errors which occur are predominantly heterogeneous (i.e. low error for some frames in a sequence and higher error for others). In this paper we propose an approach for simultaneously aligning an ensemble of deformable face images stemming from the same subject given noisy heterogeneous landmark estimates. We propose that these initial noisy landmark estimates can be used as an “anchor” in conjunction with known state-of-the-art objectives for unsupervised image ensemble alignment. Impressive alignment performance is obtained using well known deformable face fitting algorithms as “anchors.