952 resultados para Data sets storage


Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Aim - Concerns over how global change will influence species distributions, in conjunction with increased emphasis on understanding niche dynamics in evolutionary and community contexts, highlight the growing need for robust methods to quantify niche differences between or within taxa. We propose a statistical framework to describe and compare environmental niches from occurrence and spatial environmental data.¦2. Location - Europe, North America, South America¦3. Methods - The framework applies kernel smoothers to densities of species occurrence in gridded environmental space to calculate metrics of niche overlap and test hypotheses regarding niche conservatism. We use this framework and simulated species with predefined distributions and amounts of niche overlap to evaluate several ordination and species distribution modeling techniques for quantifying niche overlap. We illustrate the approach with data on two well-studied invasive species.¦4. Results - We show that niche overlap can be accurately detected with the framework when variables driving the distributions are known. The method is robust to known and previously undocumented biases related to the dependence of species occurrences on the frequency of environmental conditions that occur across geographic space. The use of a kernel smoother makes the process of moving from geographical space to multivariate environmental space independent of both sampling effort and arbitrary choice of resolution in environmental space. However, the use of ordination and species distribution model techniques for selecting, combining and weighting variables on which niche overlap is calculated provide contrasting results.¦5. Main conclusions - The framework meets the increasing need for robust methods to quantify niche differences. It is appropriate to study niche differences between species, subspecies or intraspecific lineages that differ in their geographical distributions. Alternatively, it can be used to measure the degree to which the environmental niche of a species or intraspecific lineage has changed over time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A biplot, which is the multivariate generalization of the two-variable scatterplot, can be used to visualize the results of many multivariate techniques, especially those that are based on the singular value decomposition. We consider data sets consisting of continuous-scale measurements, their fuzzy coding and the biplots that visualize them, using a fuzzy version of multiple correspondence analysis. Of special interest is the way quality of fit of the biplot is measured, since it is well-known that regular (i.e., crisp) multiple correspondence analysis seriously under-estimates this measure. We show how the results of fuzzy multiple correspondence analysis can be defuzzified to obtain estimated values of the original data, and prove that this implies an orthogonal decomposition of variance. This permits a measure of fit to be calculated in the familiar form of a percentage of explained variance, which is directly comparable to the corresponding fit measure used in principal component analysis of the original data. The approach is motivated initially by its application to a simulated data set, showing how the fuzzy approach can lead to diagnosing nonlinear relationships, and finally it is applied to a real set of meteorological data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Accurate characterization of the spatial distribution of hydrological properties in heterogeneous aquifers at a range of scales is a key prerequisite for reliable modeling of subsurface contaminant transport, and is essential for designing effective and cost-efficient groundwater management and remediation strategies. To this end, high-resolution geophysical methods have shown significant potential to bridge a critical gap in subsurface resolution and coverage between traditional hydrological measurement techniques such as borehole log/core analyses and tracer or pumping tests. An important and still largely unresolved issue, however, is how to best quantitatively integrate geophysical data into a characterization study in order to estimate the spatial distribution of one or more pertinent hydrological parameters, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first develop a strategy for the assimilation of several types of hydrogeophysical data having varying degrees of resolution, subsurface coverage, and sensitivity to the hydrologic parameter of interest. In this regard a novel simulated annealing (SA)-based conditional simulation approach was developed and then tested in its ability to generate realizations of porosity given crosshole ground-penetrating radar (GPR) and neutron porosity log data. This was done successfully for both synthetic and field data sets. A subsequent issue that needed to be addressed involved assessing the potential benefits and implications of the resulting porosity realizations in terms of groundwater flow and contaminant transport. This was investigated synthetically assuming first that the relationship between porosity and hydraulic conductivity was well-defined. Then, the relationship was itself investigated in the context of a calibration procedure using hypothetical tracer test data. Essentially, the relationship best predicting the observed tracer test measurements was determined given the geophysically derived porosity structure. Both of these investigations showed that the SA-based approach, in general, allows much more reliable hydrological predictions than other more elementary techniques considered. Further, the developed calibration procedure was seen to be very effective, even at the scale of tomographic resolution, for predictions of transport. This also held true at locations within the aquifer where only geophysical data were available. This is significant because the acquisition of hydrological tracer test measurements is clearly more complicated and expensive than the acquisition of geophysical measurements. Although the above methodologies were tested using porosity logs and GPR data, the findings are expected to remain valid for a large number of pertinent combinations of geophysical and borehole log data of comparable resolution and sensitivity to the hydrological target parameter. Moreover, the obtained results allow us to have confidence for future developments in integration methodologies for geophysical and hydrological data to improve the 3-D estimation of hydrological properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: As part of the WHO ICD-11 development initiative, the Topic Advisory Group on Quality and Safety explores meta-features of morbidity data sets, such as the optimal number of secondary diagnosis fields. DESIGN: The Health Care Quality Indicators Project of the Organization for Economic Co-Operation and Development collected Patient Safety Indicator (PSI) information from administrative hospital data of 19-20 countries in 2009 and 2011. We investigated whether three countries that expanded their data systems to include more secondary diagnosis fields showed increased PSI rates compared with six countries that did not. Furthermore, administrative hospital data from six of these countries and two American states, California (2011) and Florida (2010), were analysed for distributions of coded patient safety events across diagnosis fields. RESULTS: Among the participating countries, increasing the number of diagnosis fields was not associated with any overall increase in PSI rates. However, high proportions of PSI-related diagnoses appeared beyond the sixth secondary diagnosis field. The distribution of three PSI-related ICD codes was similar in California and Florida: 89-90% of central venous catheter infections and 97-99% of retained foreign bodies and accidental punctures or lacerations were captured within 15 secondary diagnosis fields. CONCLUSIONS: Six to nine secondary diagnosis fields are inadequate for comparing complication rates using hospital administrative data; at least 15 (and perhaps more with ICD-11) are recommended to fully characterize clinical outcomes. Increasing the number of fields should improve the international and intra-national comparability of data for epidemiologic and health services research, utilization analyses and quality of care assessment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

SUMMARY: ExpressionView is an R package that provides an interactive graphical environment to explore transcription modules identified in gene expression data. A sophisticated ordering algorithm is used to present the modules with the expression in a visually appealing layout that provides an intuitive summary of the results. From this overview, the user can select individual modules and access biologically relevant metadata associated with them. AVAILABILITY: http://www.unil.ch/cbg/ExpressionView. Screenshots, tutorials and sample data sets can be found on the ExpressionView web site.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Digital information generates the possibility of a high degree of redundancy in the data available for fitting predictive models used for Digital Soil Mapping (DSM). Among these models, the Decision Tree (DT) technique has been increasingly applied due to its capacity of dealing with large datasets. The purpose of this study was to evaluate the impact of the data volume used to generate the DT models on the quality of soil maps. An area of 889.33 km² was chosen in the Northern region of the State of Rio Grande do Sul. The soil-landscape relationship was obtained from reambulation of the studied area and the alignment of the units in the 1:50,000 scale topographic mapping. Six predictive covariates linked to the factors soil formation, relief and organisms, together with data sets of 1, 3, 5, 10, 15, 20 and 25 % of the total data volume, were used to generate the predictive DT models in the data mining program Waikato Environment for Knowledge Analysis (WEKA). In this study, sample densities below 5 % resulted in models with lower power of capturing the complexity of the spatial distribution of the soil in the study area. The relation between the data volume to be handled and the predictive capacity of the models was best for samples between 5 and 15 %. For the models based on these sample densities, the collected field data indicated an accuracy of predictive mapping close to 70 %.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The class of Schoenberg transformations, embedding Euclidean distances into higher dimensional Euclidean spaces, is presented, and derived from theorems on positive definite and conditionally negative definite matrices. Original results on the arc lengths, angles and curvature of the transformations are proposed, and visualized on artificial data sets by classical multidimensional scaling. A distance-based discriminant algorithm and a robust multidimensional centroid estimate illustrate the theory, closely connected to the Gaussian kernels of Machine Learning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One major methodological problem in analysis of sequence data is the determination of costs from which distances between sequences are derived. Although this problem is currently not optimally dealt with in the social sciences, it has some similarity with problems that have been solved in bioinformatics for three decades. In this article, the authors propose an optimization of substitution and deletion/insertion costs based on computational methods. The authors provide an empirical way of determining costs for cases, frequent in the social sciences, in which theory does not clearly promote one cost scheme over another. Using three distinct data sets, the authors tested the distances and cluster solutions produced by the new cost scheme in comparison with solutions based on cost schemes associated with other research strategies. The proposed method performs well compared with other cost-setting strategies, while it alleviates the justification problem of cost schemes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The temporal dynamics of species diversity are shaped by variations in the rates of speciation and extinction, and there is a long history of inferring these rates using first and last appearances of taxa in the fossil record. Understanding diversity dynamics critically depends on unbiased estimates of the unobserved times of speciation and extinction for all lineages, but the inference of these parameters is challenging due to the complex nature of the available data. Here, we present a new probabilistic framework to jointly estimate species-specific times of speciation and extinction and the rates of the underlying birth-death process based on the fossil record. The rates are allowed to vary through time independently of each other, and the probability of preservation and sampling is explicitly incorporated in the model to estimate the true lifespan of each lineage. We implement a Bayesian algorithm to assess the presence of rate shifts by exploring alternative diversification models. Tests on a range of simulated data sets reveal the accuracy and robustness of our approach against violations of the underlying assumptions and various degrees of data incompleteness. Finally, we demonstrate the application of our method with the diversification of the mammal family Rhinocerotidae and reveal a complex history of repeated and independent temporal shifts of both speciation and extinction rates, leading to the expansion and subsequent decline of the group. The estimated parameters of the birth-death process implemented here are directly comparable with those obtained from dated molecular phylogenies. Thus, our model represents a step towards integrating phylogenetic and fossil information to infer macroevolutionary processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Predictive groundwater modeling requires accurate information about aquifer characteristics. Geophysical imaging is a powerful tool for delineating aquifer properties at an appropriate scale and resolution, but it suffers from problems of ambiguity. One way to overcome such limitations is to adopt a simultaneous multitechnique inversion strategy. We have developed a methodology for aquifer characterization based on structural joint inversion of multiple geophysical data sets followed by clustering to form zones and subsequent inversion for zonal parameters. Joint inversions based on cross-gradient structural constraints require less restrictive assumptions than, say, applying predefined petro-physical relationships and generally yield superior results. This approach has, for the first time, been applied to three geophysical data types in three dimensions. A classification scheme using maximum likelihood estimation is used to determine the parameters of a Gaussian mixture model that defines zonal geometries from joint-inversion tomograms. The resulting zones are used to estimate representative geophysical parameters of each zone, which are then used for field-scale petrophysical analysis. A synthetic study demonstrated how joint inversion of seismic and radar traveltimes and electrical resistance tomography (ERT) data greatly reduces misclassification of zones (down from 21.3% to 3.7%) and improves the accuracy of retrieved zonal parameters (from 1.8% to 0.3%) compared to individual inversions. We applied our scheme to a data set collected in northeastern Switzerland to delineate lithologic subunits within a gravel aquifer. The inversion models resolve three principal subhorizontal units along with some important 3D heterogeneity. Petro-physical analysis of the zonal parameters indicated approximately 30% variation in porosity within the gravel aquifer and an increasing fraction of finer sediments with depth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

US Geological Survey (USGS) based elevation data are the most commonly used data source for highway hydraulic analysis; however, due to the vertical accuracy of USGS-based elevation data, USGS data may be too “coarse” to adequately describe surface profiles of watershed areas or drainage patterns. Additionally hydraulic design requires delineation of much smaller drainage areas (watersheds) than other hydrologic applications, such as environmental, ecological, and water resource management. This research study investigated whether higher resolution LIDAR based surface models would provide better delineation of watersheds and drainage patterns as compared to surface models created from standard USGS-based elevation data. Differences in runoff values were the metric used to compare the data sets. The two data sets were compared for a pilot study area along the Iowa 1 corridor between Iowa City and Mount Vernon. Given the limited breadth of the analysis corridor, areas of particular emphasis were the location of drainage area boundaries and flow patterns parallel to and intersecting the road cross section. Traditional highway hydrology does not appear to be significantly impacted, or benefited, by the increased terrain detail that LIDAR provided for the study area. In fact, hydrologic outputs, such as streams and watersheds, may be too sensitive to the increased horizontal resolution and/or errors in the data set. However, a true comparison of LIDAR and USGS-based data sets of equal size and encompassing entire drainage areas could not be performed in this study. Differences may also result in areas with much steeper slopes or significant changes in terrain. LIDAR may provide possibly valuable detail in areas of modified terrain, such as roads. Better representations of channel and terrain detail in the vicinity of the roadway may be useful in modeling problem drainage areas and evaluating structural surety during and after significant storm events. Furthermore, LIDAR may be used to verify the intended/expected drainage patterns at newly constructed highways. LIDAR will likely provide the greatest benefit for highway projects in flood plains and areas with relatively flat terrain where slight changes in terrain may have a significant impact on drainage patterns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vagueness and high dimensional space data are usual features of current data. The paper is an approach to identify conceptual structures among fuzzy three dimensional data sets in order to get conceptual hierarchy. We propose a fuzzy extension of the Galois connections that allows to demonstrate an isomorphism theorem between fuzzy sets closures which is the basis for generating lattices ordered-sets

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genotypic frequencies at codominant marker loci in population samples convey information on mating systems. A classical way to extract this information is to measure heterozygote deficiencies (FIS) and obtain the selfing rate s from FIS = s/(2 - s), assuming inbreeding equilibrium. A major drawback is that heterozygote deficiencies are often present without selfing, owing largely to technical artefacts such as null alleles or partial dominance. We show here that, in the absence of gametic disequilibrium, the multilocus structure can be used to derive estimates of s independent of FIS and free of technical biases. Their statistical power and precision are comparable to those of FIS, although they are sensitive to certain types of gametic disequilibria, a bias shared with progeny-array methods but not FIS. We analyse four real data sets spanning a range of mating systems. In two examples, we obtain s = 0 despite positive FIS, strongly suggesting that the latter are artefactual. In the remaining examples, all estimates are consistent. All the computations have been implemented in a open-access and user-friendly software called rmes (robust multilocus estimate of selfing) available at http://ftp.cefe.cnrs.fr, and can be used on any multilocus data. Being able to extract the reliable information from imperfect data, our method opens the way to make use of the ever-growing number of published population genetic studies, in addition to the more demanding progeny-array approaches, to investigate selfing rates.