859 resultados para Data mining, Business intelligence, Previsioni di mercato


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A descoberta de conhecimento em dados hoje em dia é um ponto forte para as empresas. Atualmente a CardMobili não dispõe de qualquer sistema de mineração de dados, sendo a existência deste uma mais-valia para as suas operações de marketing diárias, nomeadamente no lançamento de cupões a um grupo restrito de clientes com uma elevada probabilidade que os mesmos os utilizem. Para isso foi analisada a base de dados da aplicação tentando extrair o maior número de dados e aplicadas as transformações necessárias para posteriormente serem processados pelos algoritmos de mineração de dados. Durante a etapa de mineração de dados foram aplicadas as técnicas de associação e classificação, sendo que os melhores resultados foram obtidos com técnicas de associação. Desta maneira pretende-se que os resultados obtidos auxiliem o decisor na sua tomada de decisões.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O aumento de tecnologias disponíveis na Web favoreceu o aparecimento de diversas formas de informação, recursos e serviços. Este aumento aliado à constante necessidade de formação e evolução das pessoas, quer a nível pessoal como profissional, incentivou o desenvolvimento área de sistemas de hipermédia adaptativa educacional - SHAE. Estes sistemas têm a capacidade de adaptar o ensino consoante o modelo do aluno, características pessoais, necessidades, entre outros aspetos. Os SHAE permitiram introduzir mudanças relativamente à forma de ensino, passando do ensino tradicional que se restringia apenas ao uso de livros escolares até à utilização de ferramentas informáticas que através do acesso à internet disponibilizam material didático, privilegiando o ensino individualizado. Os SHAE geram grande volume de dados, informação contida no modelo do aluno e todos os dados relativos ao processo de aprendizagem de cada aluno. Facilmente estes dados são ignorados e não se procede a uma análise cuidada que permita melhorar o conhecimento do comportamento dos alunos durante o processo de ensino, alterando a forma de aprendizagem de acordo com o aluno e favorecendo a melhoria dos resultados obtidos. O objetivo deste trabalho foi selecionar e aplicar algumas técnicas de Data Mining a um SHAE, PCMAT - Mathematics Collaborative Educational System. A aplicação destas técnicas deram origem a modelos de dados que transformaram os dados em informações úteis e compreensíveis, essenciais para a geração de novos perfis de alunos, padrões de comportamento de alunos, regras de adaptação e pedagógicas. Neste trabalho foram criados alguns modelos de dados recorrendo à técnica de Data Mining de classificação, abordando diferentes algoritmos. Os resultados obtidos permitirão definir novas regras de adaptação e padrões de comportamento dos alunos, poderá melhorar o processo de aprendizagem disponível num SHAE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação incide sobre a problemática da construção de um data warehouse para a empresa AdClick que opera na área de marketing digital. O marketing digital é um tipo de marketing que utiliza os meios de comunicação digital, com a mesma finalidade do método tradicional que se traduz na divulgação de bens, negócios e serviços e a angariação de novos clientes. Existem diversas estratégias de marketing digital tendo em vista atingir tais objetivos, destacando-se o tráfego orgânico e tráfego pago. Onde o tráfego orgânico é caracterizado pelo desenvolvimento de ações de marketing que não envolvem quaisquer custos inerentes à divulgação e/ou angariação de potenciais clientes. Por sua vez o tráfego pago manifesta-se pela necessidade de investimento em campanhas capazes de impulsionar e atrair novos clientes. Inicialmente é feita uma abordagem do estado da arte sobre business intelligence e data warehousing, e apresentadas as suas principais vantagens as empresas. Os sistemas business intelligence são necessários, porque atualmente as empresas detêm elevados volumes de dados ricos em informação, que só serão devidamente explorados fazendo uso das potencialidades destes sistemas. Nesse sentido, o primeiro passo no desenvolvimento de um sistema business intelligence é concentrar todos os dados num sistema único integrado e capaz de dar apoio na tomada de decisões. É então aqui que encontramos a construção do data warehouse como o sistema único e ideal para este tipo de requisitos. Nesta dissertação foi elaborado o levantamento das fontes de dados que irão abastecer o data warehouse e iniciada a contextualização dos processos de negócio existentes na empresa. Após este momento deu-se início à construção do data warehouse, criação das dimensões e tabelas de factos e definição dos processos de extração e carregamento dos dados para o data warehouse. Assim como a criação das diversas views. Relativamente ao impacto que esta dissertação atingiu destacam-se as diversas vantagem a nível empresarial que a empresa parceira neste trabalho retira com a implementação do data warehouse e os processos de ETL para carregamento de todas as fontes de informação. Sendo que algumas vantagens são a centralização da informação, mais flexibilidade para os gestores na forma como acedem à informação. O tratamento dos dados de forma a ser possível a extração de informação a partir dos mesmos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the results of applied research on the eco-driving domain based on a huge data set produced from a fleet of Lisbon's public transportation buses for a three-year period. This data set is based on events automatically extracted from the control area network bus and enriched with GPS coordinates, weather conditions, and road information. We apply online analytical processing (OLAP) and knowledge discovery (KD) techniques to deal with the high volume of this data set and to determine the major factors that influence the average fuel consumption, and then classify the drivers involved according to their driving efficiency. Consequently, we identify the most appropriate driving practices and styles. Our findings show that introducing simple practices, such as optimal clutch, engine rotation, and engine running in idle, can reduce fuel consumption on average from 3 to 5l/100 km, meaning a saving of 30 l per bus on one day. These findings have been strongly considered in the drivers' training sessions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide electricity markets have been evolving into regional and even continental scales. The aim at an efficient use of renewable based generation in places where it exceeds the local needs is one of the main reasons. A reference case of this evolution is the European Electricity Market, where countries are connected, and several regional markets were created, each one grouping several countries, and supporting transactions of huge amounts of electrical energy. The continuous transformations electricity markets have been experiencing over the years create the need to use simulation platforms to support operators, regulators, and involved players for understanding and dealing with this complex environment. This paper focuses on demonstrating the advantage that real electricity markets data has for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations will bring to the participant countries. A case study using MASCEM (Multi-Agent System for Competitive Electricity Markets) is presented, with a scenario based on real data, simulating the European Electricity Market environment, and comparing its performance when using several different market mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Harnessing idle PCs CPU cycles, storage space and other resources of networked computers to collaborative are mainly fixated on for all major grid computing research projects. Most of the university computers labs are occupied with the high puissant desktop PC nowadays. It is plausible to notice that most of the time machines are lying idle or wasting their computing power without utilizing in felicitous ways. However, for intricate quandaries and for analyzing astronomically immense amounts of data, sizably voluminous computational resources are required. For such quandaries, one may run the analysis algorithms in very puissant and expensive computers, which reduces the number of users that can afford such data analysis tasks. Instead of utilizing single expensive machines, distributed computing systems, offers the possibility of utilizing a set of much less expensive machines to do the same task. BOINC and Condor projects have been prosperously utilized for solving authentic scientific research works around the world at a low cost. In this work the main goal is to explore both distributed computing to implement, Condor and BOINC, and utilize their potency to harness the ideal PCs resources for the academic researchers to utilize in their research work. In this thesis, Data mining tasks have been performed in implementation of several machine learning algorithms on the distributed computing environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on short- time stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced.