976 resultados para Damage detection


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using Acoustic Emission Testing (AET) to determine the onset of paper damage will be demonstrated on tensile coupons made from mechanical pulp. This technique is part of an EU funded project named the Fifth Frame Program. Its aim is to develop methods for determining specific damage mechanisms through AET. Various such techniques of damage detection will be demonstrated in the coming work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-strand DNA (ssDNA)-binding proteins (SSBs) are ubiquitous and essential for a wide variety of DNA metabolic processes, including DNA replication, recombination, DNA damage detection and repair. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating nucleases, helicases and strand-exchange proteins, activating transcription and mediating protein-protein interactions. In eukaryotes, the major SSB, replication protein A (RPA), is a heterotrimer. Here we describe a second human SSB (hSSB1), with a domain organization closer to the archaeal SSB than to RPA. Ataxia telangiectasia mutated (ATM) kinase phosphorylates hSSB1 in response to DNA double-strand breaks (DSBs). This phosphorylation event is required for DNA damage-induced stabilization of hSSB1. Upon induction of DNA damage, hSSB1 accumulates in the nucleus and forms distinct foci independent of cell-cycle phase. These foci co-localize with other known repair proteins. In contrast to RPA, hSSB1 does not localize to replication foci in S-phase cells and hSSB1 deficiency does not influence S-phase progression. Depletion of hSSB1 abrogates the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets after ionizing radiation. Cells deficient in hSSB1 exhibit increased radiosensitivity, defective checkpoint activation and enhanced genomic instability coupled with a diminished capacity for DNA repair. These findings establish that hSSB1 influences diverse endpoints in the cellular DNA damage response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years there have been a growing number of publications on procedures for damage detection in beams from analysing their dynamic response to the passage of a moving force. Most of this research demonstrates their effectiveness by showing that a singularity that did not appear in the healthy structure is present in the response of the damaged structure. This paper elucidates from first principles how the acceleration response can be assumed to consist of ‘static’ and ‘dynamic’ components, and where the beam has experienced a localised loss in stiffness, an additional ‘damage’ component. The combination of these components establishes how the damage singularity will appear in the total response. For a given damage severity, the amplitude of the ‘damage’ component will depend on how close the damage location is to the sensor, and its frequency content will increase with higher velocities of the moving force. The latter has implications for damage detection because if the frequency content of the ‘damage’ component includes bridge and/or vehicle frequencies, it becomes more difficult to identify damage. The paper illustrates how a thorough understanding of the relationship between the ‘static‘ and ‘damage’ components contributes to establish if damage has occurred and to provide an estimation of its location and severity. The findings are corroborated using accelerations from a planar finite element simulation model where the effects of force velocity and bridge span are examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scour around bridge foundations is one of the leading causes of bridge failure. Up until recently, the monitoring of this phenomenon was primarily based around using underwater instrumentation to monitor the progression of scour holes as they develop around foundation systems. Vibration-based damage detection techniques have been used to detect damage in bridge beams. The application of these vibration based methods to the detection of scour has come to the fore in research in recent years. This paper examines the effect that scour has on the frequency response of a driven pile foundation system, similar to those used to support road and rail bridges. The effect of scour on the vibration characteristics of the pile is examined using laboratory and field testing. It is clear that there is a very clear reduction in the natural frequency of the pile as the severity of scour increases. It is shown that by combining state-of-the-art geotechnical techniques with relatively simple finite element modelling approaches, it is possible to accurately predict the natural frequency of the pile for a given scour depth. Therefore, the paper proposes a method that would allow the estimation of scour depth for a given observed pile frequency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous research on damage detection based on the response of a structure to a moving load has reported decay in accuracy with increasing load speed. Using a 3D vehicle – bridge interaction model, this paper shows that the area under the filtered acceleration response of the bridge increases with increasing damage, even at highway load speeds. Once a datum reading is established, the area under subsequent readings can be monitored and compared with the baseline reading, if an increase is observed it may indicate the presence of damage. The sensitivity of the proposed approach to road roughness and noise is tested in several damage scenarios. The possibility of identifying damage in the bridge by analysing the acceleration response of the vehicle traversing it is also investigated. While vehicle acceleration is shown to be more sensitive to road roughness and noise and therefore less reliable than direct bridge measurements, damage is successfully identified in favourable scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy harvesting from ambient vibration is a promising field, especially for applications in larger infrastructures such as bridges. These structures are more frequently monitored for damage detection because of their extended life, increased traffic load and environmental deterioration. In this regard, the possibility of sourcing the power necessary for the sensors from devices embedded in the structure, thus cutting the cost due to the management of battery replacing over the lifespan of the structure, is particularly attracting. Among others, piezoelectric devices have proven to be especially effective and easy to apply since they can be bonded to existing host structure. For these devices the energy harvesting capacity is achieved directly from the variation in the strain conditions from the surface of the structure. However these systems need to undergo significant research for optimisation of their harvesting capacity and for assessing the feasibility of application to various ranges of bridge span and load. In this regard scaled bridge prototypes can be effectively used not only to assess numerical models and studies in an inexpensive and repeatable way but also to test the electronic devices under realistic field conditions. In this paper the theory of physical similitude is applied to the design of bridge beams with embedded energy harvesting systems and health monitoring sensors. It will show both how bridge beams can be scaled in such a way to apply and test energy harvesting systems and 2) how experimental data from existing bridges can be applied to prototypes in a laboratory environment. The study will be used for assessing the reliability of the system over a train bridge case study undergoing a set load cycles and induced localised damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A conventional way to identify bridge frequencies is utilizing vibration data measured directly from the bridge. A drawback with this approach is that the deployment and maintenance of the vibration sensors are generally costly and time-consuming. One way to cope with the drawback is an indirect approach utilizing vehicle vibrations while the vehicle passes over the bridge. In the indirect approach, however, the vehicle vibration includes the effect of road surface roughness, which makes it difficult to extract the bridge modal properties. One solution may be subtracting signals of two trailers towed by a vehicle to reduce the effect of road surface roughness. A simplified vehicle-bridge interaction model is used in the numerical simulation; the vehicle - trailer and bridge system are modeled as a coupled model. In addition, a laboratory experiment is carried out to verify results of the simulation and examine feasibility of the damage detection by the indirect method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the recent years the study of smart structures has attracted significant researchers, due to their potential benefits in a wide range of applications, such as shape control, vibration suppression, noise attenuation and damage detection. The applications in aerospace industry are of great relevance, such as in active control of airplane wings, helicopter blade rotor, space antenna. The use of smart materials, such as piezoelectric materials, in the form of layers or patches embedded and/or surface bonded on laminated composite structures, can provide structures that combine the superior mechanical properties of composite materials and the capability to sense and adapt their static and dynamic response, becoming adaptive structures. The piezoelectric materials have the property of generate electrical charge under mechanical load or deformation, and the reverse, applying an electrical field to the material results in mechanical strain or stresses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bien qu’ils soient exposés tous deux aux rayons ultraviolets (UVR) solaires, cette exposition génotoxique n’entraîne pas les mêmes conséquences dans l’oeil et la peau. Le rôle des rayons UV dans l’induction et la progression des cancers cutanés est bien démontré. Ces rayons génotoxiques sont absorbés par l’ADN. Ils y induisent ainsi des changements conformationnels pouvant mener à la formation de différents dommages. On retrouve de façon prédominante la liaison de pyrimidines adjacentes en dimères cyclobutyliques de pyrimidines (CPD). Ceux-ci causent les mutations signatures responsables des cancers de la peau induits par les UVR. Cependant, aucune évidence ne démontre l’existence de cancer induit par les UVR dans la cornée. Nous avons donc tenté de découvrir les mécanismes permettant à la cornée d’éviter la transformation tumorale induite par les UVR. L’irradiation d’yeux de lapins aux rayons UVB a permis de prouver la capacité de ces rayons à induire la formation de CPD, et ce, de la cornée jusqu’au cristallin. Par la suite, l’irradiation d’yeux humains aux trois types de rayons UV (UVA, B et C) a permis d’y établir leur patron d’induction de CPD. Nous avons ainsi démontré que l’épithélium cornéen est particulièrement sensible à l’induction de CPD, tous types de rayons UV confondus. Enfin, la comparaison de la quantité de dommages présents dans des échantillons de peaux et de cornées irradiées à la même dose d’UVB a permis de démontrer que l’épithélium cornéen est 3.4 fois plus sensible à l’induction de CPD que l’épiderme. Nous avons par la suite étudié les mécanismes de réponse à ce stress. L’analyse de la viabilité cellulaire à la suite d’irradiations à différentes doses d’UVB a révélé que les cellules de la cornée et de la peau ont la même sensibilité à la mort cellulaire induite par les UVR. Nous avons alors analysé la vitesse de réparation des dommages induits par les UVR. Nos résultats démontrent que les CPD sont réparés 4 fois plus rapidement dans les cellules de la cornée que de la peau. L’analyse des protéines de reconnaissance des dommages a révélé que les cellules de la cornée possèdent plus de protéines DDB2 que les cellules de la peau, et ce, surtout liées à la chromatine. Nous avons alors tenté d’identifier la cause de cette accumulation. Nos analyses révèlent que la cornée possède une moins grande quantité d’ARNm DDB2, mais que la demi-vie de la protéine y est plus longue. Enfin, nos résultats suggèrent que l’accumulation de DDB2 dans les cellules de la cornée est entre autres due à une demi-vie plus longue de la protéine. Cette forte présence de DDB2 dans les cellules de la cornée permettrait un meilleur balayage de l’ADN, faciliterait de ce fait la détection de CPD ainsi que leur réparation et contribuerait donc à la capacité de la cornée à éviter la transformation tumorale induite par les UVR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A sandwich construction is a special form of the laminated composite consisting of light weight core, sandwiched between two stiff thin face sheets. Due to high stiffness to weight ratio, sandwich construction is widely adopted in aerospace industries. As a process dependent bonded structure, the most severe defects associated with sandwich construction are debond (skin core bond failure) and dent (locally deformed skin associated with core crushing). Reasons for debond may be attributed to initial manufacturing flaws or in service loads and dent can be caused by tool drops or impacts by foreign objects. This paper presents an evaluation on the performance of honeycomb sandwich cantilever beam with the presence of debond or dent, using layered finite element models. Dent is idealized by accounting core crushing in the core thickness along with the eccentricity of the skin. Debond is idealized using multilaminate modeling at debond location with contact element between the laminates. Vibration and buckling behavior of metallic honeycomb sandwich beam with and without damage are carried out. Buckling load factor, natural frequency, mode shape and modal strain energy are evaluated using finite element package ANSYS 13.0. Study shows that debond affect the performance of the structure more severely than dent. Reduction in the fundamental frequencies due to the presence of dent or debond is not significant for the case considered. But the debond reduces the buckling load factor significantly. Dent of size 8-20% of core thickness shows 13% reduction in buckling load capacity of the sandwich column. But debond of the same size reduced the buckling load capacity by about 90%. This underscores the importance of detecting these damages in the initiation level itself to avoid catastrophic failures. Influence of the damages on fundamental frequencies, mode shape and modal strain energy are examined. Effectiveness of these parameters as a damage detection tool for sandwich structure is also assessed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La idea básica de detección de defectos basada en vibraciones en Monitorización de la Salud Estructural (SHM), es que el defecto altera las propiedades de rigidez, masa o disipación de energía de un sistema, el cual, altera la respuesta dinámica del mismo. Dentro del contexto de reconocimiento de patrones, esta tesis presenta una metodología híbrida de razonamiento para evaluar los defectos en las estructuras, combinando el uso de un modelo de la estructura y/o experimentos previos con el esquema de razonamiento basado en el conocimiento para evaluar si el defecto está presente, su gravedad y su localización. La metodología involucra algunos elementos relacionados con análisis de vibraciones, matemáticas (wavelets, control de procesos estadístico), análisis y procesamiento de señales y/o patrones (razonamiento basado en casos, redes auto-organizativas), estructuras inteligentes y detección de defectos. Las técnicas son validadas numérica y experimentalmente considerando corrosión, pérdida de masa, acumulación de masa e impactos. Las estructuras usadas durante este trabajo son: una estructura tipo cercha voladiza, una viga de aluminio, dos secciones de tubería y una parte del ala de un avión comercial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)