921 resultados para DROUGHT TOLERANCE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulated irrigation has the potential to improve crop quality in woody ornamentals by reducing excessive vigour and promoting a more compact habit. This research aimed to compare the effectiveness and the mode of action of two techniques, regulated deficit irrigation (RDI) and partial root drying (PRD), when applied to container-grown ornamentals through drip irrigation. Results showed that RDI and PRD reduced growth in Cotinus coggygria 'Royal Purple', but in Forsythia x intermedia 'Lynwood', significant reductions were recorded only with RDI. Physiological measurements in Forsythia indicated that reductions in stomatal conductance (g(s)) occurred in both treatments, but those in the RDI tended to be more persistent. Reduced g(s) in PRD was consistent with the concept that chemical signals from the root can regulate stomatal aperture alone; however, the data also suggested that optimising the growth reduction required a moderate degree of shoot water deficit (i.e. a hydraulic signal to be imposed). As RDI was associated with tissue water deficit, it was used in a second experiment to determine the potential of this technique to precondition container-grown plants against subsequent drought stress (e.g. during retail stages or after planting out). Speed of acclimation would be important in a commercial context, and the results demonstrated that both slow and rapid imposition of RDI enabled Forsythia plants to acclimate against later drought events. This article discusses the potential to both improve ornamental plant quality and enhance tolerance to subsequent adverse conditions through controlled, regulated irrigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic analysis of heat tolerance will help breeders produce rice (Oryza sativa L.) varieties adapted to future climates. An F6 population of 181 recombinant inbred lines of Bala (tolerant) × Azucena (susceptible) was screened for heat tolerance at anthesis by measuring spikelet fertility at 30°C (control) and 38°C (high temperature) in experiments conducted in the Philippines and the United Kingdom. The parents varied significantly for absolute spikelet fertility under control (79–87%) and at high temperature (2.9–47.1%), and for relative spikelet fertility (high temperature/control) at high temperature (3.7–54.9%). There was no correlation between spikelet fertility in control and high-temperature conditions and no common quantitative trait loci (QTLs) were identified. Two QTLs for spikelet fertility under control conditions were identified on chromosomes 2 and 4. Eight QTLs for spikelet fertility under high-temperature conditions were identified on chromosomes 1, 2, 3, 8, 10, and 11. The most significant heat-responsive QTL, contributed by Bala and explaining up to 18% of the phenotypic variation, was identified on chromosome 1 (38.35 mega base pairs on the rice physical genome map). This QTL was also found to influence plant height, explaining 36.6% of the phenotypic variation. A comparison with other studies of abiotic (drought, cold, salinity) stresses showed QTLs at similar positions on chromosomes 1, 3, 8, and 10, suggesting common underlying stress-responsive regions of the genome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous works suggested that Pleurostima purpurea (Velloziaceae-Barbacenioideae) shows a remarkable capacity to endure desiccation of its vegetative tissues. P. purpurea occurs in monocotyledons mats on soil islands in the Pao de Acucar (Sugar Loaf) one of the most recognizable rock outcrops of the world, in Rio de Janeiro, southeastern Brazil. Mats of P. purpurea occur in cliffs by the sea some meters above the tidal zone. Although living in rock outcrops almost devoid of any soil cover, P. purpurea seems to occur preferably on less exposed rock faces and slightly shady sites. Usually, less extreme adaptations to drought would be expected in plants with the habitat preference of P. purpurea. Relying on this observation, we argue if a combination of different strategies of dealing with low water availability can be found in P. purpurea as on other desiccation tolerant angiosperms. This study aims to examine the occurrence of desiccation tolerant behavior in P. purpurea together with the expression of drought avoidance mechanisms during dehydration progression. For this, it was analyzed the gas exchanges, leaf pigments and relative leaf water content during desiccation and rehydration of cultivated mature individuals. P. purpurea behaved like typical drought avoiders under moderated drought condition with stomatal closure occurring around a relative leaf water content up to 90%. During this process, it was observed a delay in the leaf relative water content (RWC(leaf)) decrease comparing to the plant-soil relative water content (RWC(plant-soil)). As soil dehydration worsened, gas exchanges restrictions progressed until a lack of activity which characterizes anabiosis. The loss of chlorophyll occurs before the end of total dehydration, characterizing the presence of poikilochlorophylly. The chlorophyll degradation follows the RWC(leaf) decrease, which achieved the minimum average value of 17% without incurring in leaf abscission. The chlorophyll re-synthesis seems to start well after the full rehydration of the leaf. During all of this process, carotenoid content remained stable. These results are coherent with a combination of drought avoidance and desiccation tolerance in P. purpurea which seems to be coherent with the amplitude of water availability in the rock outcrop habitat where it occurs, suggesting that the periods of water availability are sufficiently long for the success of the costly desiccation tolerant behavior but too short to make a typical drought avoider species win the competition for exploring the rock outcrop substrate where P. purpurea occurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well-documented that phytochromes can control plant growth and development from germination to flowering. Additionally, these photoreceptors have been shown to modulate both biotic and abiotic stress. This has led to a series of studies exploring the molecular and biochemical basis by which phytochromes modulate stresses, such as salinity, drought, high light or herbivory. Evidence for a role of phytrochromes in plant stress tolerance is explored and reviewed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sweet sorghum, a C4 crop of tropical origin, is gaining momentum as a multipurpose feedstock to tackle the growing environmental, food and energy security demands. Under temperate climates sweet sorghum is considered as a potential bioethanol feedstock, however, being a relatively new crop in such areas its physiological and metabolic adaptability has to be evaluated; especially to the more frequent and severe drought spells occurring throughout the growing season and to the cold temperatures during the establishment period of the crop. The objective of this thesis was to evaluate some adaptive photosynthetic traits of sweet sorghum to drought and cold stress, both under field and controlled conditions. To meet such goal, a series of experiments were carried out. A new cold-tolerant sweet sorghum genotype was sown in rhizotrons of 1 m3 in order to evaluate its tolerance to progressive drought until plant death at young and mature stages. Young plants were able to retain high photosynthetic rate for 10 days longer than mature plants. Such response was associated to the efficient PSII down-regulation capacity mediated by light energy dissipation, closure of reaction centers (JIP-test parameters), and accumulation of glucose and sucrose. On the other hand, when sweet sorghum plants went into blooming stage, neither energy dissipation nor sugar accumulation counteracted the negative effect of drought. Two hybrids with contrastable cold tolerance, selected from an early sowing field trial were subjected to chilling temperatures under controlled growth conditions to evaluate in deep their physiological and metabolic cold adaptation mechanisms. The hybrid which poorly performed under field conditions (ICSSH31), showed earlier metabolic changes (Chl a + b, xanthophyll cycle) and greater inhibition of enzymatic activity (Rubisco and PEPcase activity) than the cold tolerant hybrid (Bulldozer). Important insights on the potential adaptability of sweet sorghum to temperate climates are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing water scarcity and depleted water productivity in irrigated soils are inducing farmers to adopt improved varieties, such as those with high-capacity tolerance. The use of tolerant varieties of sugarcane might substantially avoid the decline of productivity under water deficit. This research aimed to evaluate the harmful effects of drought on the physiology of two sugarcane varieties (RB867515 and RB962962) during the initial development. Young plants were subjected to irrigation suspension until total stomata closure, and then rewatered. Significant reduction on stomatal conductance, transpiration, and net photosynthesis were observed. RB867515 showed a faster stomatal closure while RB962962 slowed the effects of drought on the gas exchanges parameters with a faster recovering after rewatering. Accumulation of carbohydrates, amino acids, proline, and protein in the leaves and roots of the stressed plants occurred in both varieties, substantially linked to reduction of the leaf water potential. Due to the severity of stress, this accumulation was not enough to maintain the cell turgor pressure, so relative water content was diminished. Water stress affected the contents of chlorophyll (a, b, and total) in both varieties, but not the levels of carotenoids. There was a significant reduction in dry matter under stress. In conclusion, RB962962 variety endured stressed conditions more than RB867515, since it slowed down the damaging effects of drought on the gas exchanges. In addition, RB962962 presented a faster recovery than RB867515, a feature that qualifies it as a variety capable of enduring short periods of drought without major losses in the initial stage of its development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ADH (alcohol dehydrogenase) system is one of the earliest known models of molecular evolution, and is still the most studied in Drosophila. Herein, we studied this model in the genus Anastrepha (Diptera, Tephritidae). Due to the remarkable advantages it presents, it is possible to cross species with different Adh genotypes and with different phenotype traits related to ethanol tolerance. The two species studied here each have a different number of Adh gene copies, whereby crosses generate polymorphisms in gene number and in composition of the genetic background. We measured certain traits related to ethanol metabolism and tolerance. ADH specific enzyme activity presented gene by environment interactions, and the larval protein content showed an additive pattern of inheritance, whilst ADH enzyme activity per larva presented a complex behavior that may be explained by epistatic effects. Regression models suggest that there are heritable factors acting on ethanol tolerance, which may be related to enzymatic activity of the ADHs and to larval mass, although a pronounced environmental effect on ethanol tolerance was also observed. By using these data, we speculated on the mechanisms of ethanol tolerance and its inheritance as well as of associated traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Acid soils comprise up to 50% of the world's arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the Alt(SB) locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release. Methodology: Population structure was studied in 254 sorghum accessions representative of the diversity present in cultivated sorghums. Al tolerance was assessed as the degree of root growth inhibition in nutrient solution containing Al. A genetic analysis based on markers flanking Alt(SB) and SbMATE expression was undertaken to assess a possible role for Alt(SB) in Al tolerant accessions. In addition, the mode of gene action was estimated concerning the Al tolerance trait. Comparisons between models that include population structure were applied to assess the importance of each subpopulation to Al tolerance. Conclusion/Significance: Six subpopulations were revealed featuring specific racial and geographic origins. Al tolerance was found to be rather rare and present primarily in guinea and to lesser extent in caudatum subpopulations. Alt(SB) was found to play a role in Al tolerance in most of the Al tolerant accessions. A striking variation was observed in the mode of gene action for the Al tolerance trait, which ranged from almost complete recessivity to near complete dominance, with a higher frequency of partially recessive sources of Al tolerance. A possible interpretation of our results concerning the origin and evolution of Al tolerance in cultivated sorghum is discussed. This study demonstrates the importance of deeply exploring the crop diversity reservoir both for a comprehensive view of the dynamics underlying the distribution and function of Al tolerance genes and to design efficient molecular breeding strategies aimed at enhancing Al tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The purpose of this study was to evaluate collagen deposition, mRNA collagen synthesis and TGFbeta expression in the lung tissue in an experimental model of scleroderma after collagen V-induced nasal tolerance. Methods: Female New Zealand rabbits (N = 12) were immunized with 1 mg/ml of collagen V in Freund's adjuvant (IM). After 150 days, six immunized animals were tolerated by nasal administration of collagen V ( 25 mu g/day) (IM-TOL) daily for 60 days. The collagen content was determined by morphometry, and mRNA expressions of types I, III and V collagen were determined by Real-time PCR. The TGF-beta expression was evaluated by immunostaining and quantified by point counting methods. To statistic analysis ANOVA with Bonferroni test were employed for multiple comparison when appropriate and the level of significance was determined to be p < 0.05. Results: IM-TOL, when compared to IM, showed significant reduction in total collagen content around the vessels (0.371 +/- 0.118 vs. 0.874 +/- 0.282, p < 0.001), bronchioles (0.294 +/- 0.139 vs. 0.646 +/- 0.172, p < 0.001) and in the septal interstitium (0.027 +/- 0.014 vs. 0.067 +/- 0.039, p = 0.026). The lung tissue of IM-TOL, when compared to IM, showed decreased immunostaining of types I, III and V collagen, reduced mRNA expression of types I (0.10 +/- 0.07 vs. 1.0 +/- 0.528, p = 0.002) and V (1.12 +/- 0.42 vs. 4.74 +/- 2.25, p = 0.009) collagen, in addition to decreased TGF-beta expression ( p < 0.0001). Conclusions: Collagen V-induced nasal tolerance in the experimental model of SSc regulated the pulmonary remodeling process, inhibiting collagen deposition and collagen I and V mRNA synthesis. Additionally, it decreased TGF-beta expression, suggesting a promising therapeutic option for scleroderma treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: To determine the prevalence of diabetes mellitus (DM) and impaired glucose tolerance (IGT) in a rural community (Bengo) of Angola. Methods: A random sample of 421 subjects aged 30 to 69 years (30% men and 70% women) was selected from three villages of Bengo province. This cross-sectional home survey was conducted using a sampling design of stage conglomerates. First, clinical and anthropometric data were obtained and fasting capillary glucose level was determined. Subjects who screened positive (fasting capillary glucose >= 100 mg/dl and < 200 mg/dl) and each sixth consecutive subject who screened negative (fasting capillary glucose < 100 mg/dl) were submitted to the second phase of survey, consisting of the 75 g oral glucose tolerance test. Data was analyzed by the use of SAS statistical software. Results: The prevalence rates of diabetes mellitus and IGT were 2.8% and 8.1%, respectively. The age group with the highest prevalence of diabetes was 60 to 69 years (42%). Impaired glucose tolerance prevalence was 38% in the 40 to 49 year age group and it increased with age, considering that the 50 to 59 and 60 to 69 year age groups as a whole represent 50% of all subjects with impaired glucose tolerance. The prevalence of diabetes mellitus did not differ significantly between men (3.2%) and women (2.7%) (p = 0.47). On the other hand, the prevalence of impaired glucose tolerance among women showed almost twice that found in men (9.1% vs. 5.6%, respectively). Overweight was present in 66.7% of the individuals with diabetes mellitus and 26.5% of individuals with impaired glucose tolerance showed overweight or obesity. Conclusions: Although the prevalence of diabetes mellitus was low, the prevalence of impaired glucose tolerance is considered to be within an intermediary range, suggesting a future increase in the frequency of diabetes in this population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To identify predictive factors associated with non-deterioration of glucose metabolism following a 2-year behavioral intervention in Japanese-Brazilians. Methods: 295 adults (59.7% women) without diabetes completed 2-year intervention program. Characteristics of those who maintained/improved glucose tolerance status (non-progressors) were compared with those who worsened (progressors) after the intervention. In logistic regression analysis, the condition of non-progressor was used as dependent variable. Results: Baseline characteristics of non-progressors (71.7%) and progressors were similar, except for the former being younger and having higher frequency of disturbed glucose tolerance and lower C-reactive protein (CRP). In logistic regression, non-deterioration of glucose metabolism was associated with disturbed glucose tolerance impaired fasting glucose or impaired glucose tolerance - (p < 0.001) and CRP levels <= 0.04 mg/dL (p = 0.01), adjusted for age and anthropometric variables. Changes in anthropometry and physical activity and achievement of weight and dietary goals after intervention were similar in subsets that worsened or not the glucose tolerance status. Conclusion: The whole sample presented a homogeneous behavior during the intervention. Lower CRP levels and diagnosis of glucose intolerance at baseline were predictors of non-deterioration of the glucose metabolism after a relatively simple intervention, independent of body adiposity.