412 resultados para DIAZO KETONES
Resumo:
Alcaligenes eutrophus utilizing nerolidol, a sesquiterpene alcohol,as the sole source of carbon contains an inducible NAD(P)+-linked secondary alcohol dehydrogenase (SADH). The enzyme was purified to homogeneity by a combination of salt precipitation, ion exchange and affinity matri chromatographies. The apparent molecular mass of the enzyme was estimated to be 139 KDa with four identical subunits of 38.5 KDa. The enzyme carried out both oxidation and reduction reactions. At pH 5.5, enzyme catalyzed the stereospecific reduction of prochiral ketones to secondary alcohols. The pH optimum for the oxidation reaction was 9.5. NADP+ and NADPH were respectively preferred over NAD+ and NADH for oxidation and reduction reactions. Some of the properties of this enzyme were found to be significantly different from those thus far described.
Resumo:
Stereoselective synthesis of styryl lactone, (+)-7-epi-goniofufurone was achieved in high yield via simple transformations from tartaric acid. The key step involves the successive stereoselective reduction of ketones with borohydride and selectride.
Resumo:
The reverse regio- and diastereoselectivities are observed between the reactions involving 5- and 6-membered-ring cyclic carbonyl ylide dipoles with alpha-methylene ketones. A mild catalytic route to synthesize spirocyclic systems with high regio-, chemo- and diastereoselectivities is described.
Spectroscopic studies of n-donor - σ-acceptor systems: Carbonyl and thiocarbonyl compounds as donors
Resumo:
The interaction of ketones and various thiocarbonyl derivatives with iodine has been examined. The thermodynamics of the interaction of carbonyl and thiocarbonyl donors have been discussed and compared.
Resumo:
Effects of non-polar, polar and proton-donating solvents on the n → π* transitions of C=O, C=S, NO2 and N=N groups have been investigated. The shifts of the absorption maxima in non-polar and polar solvents have been related to the electrostatic interactions between solute and solvent molecules, by employing the theory of McRAE. In solvents which can donate protons the solvent shifts are mainly determined by solute-solvent hydrogen bonding. Isobestic points have been found in the n → π* bonds of ethylenetrithio-carbonate in heptane-alcohol and heptane-chloroform solvent systems, indicating the existence of equilibria between the hydrogen bonded and the free species of the solute. Among the different proton-donating solvents studied water produces the largest blue-shifts. The blue-shifts in alcohols decrease in the order 2,2,2-trifluoroethanol, methanol, ethanol, isopropanol and t-butanol, the blue-shift in trifluoroethanol being nearly equal to that in water. This trend is exactly opposite to that for the self-association of alcohols. It is suggested that electron-withdrawing groups not merely decrease the extent of self-association of alcohols, but also increase the ability to donate hydrogen bonds. The approximate hydrogen-bond energies for several donor-acceptor systems have been estimated. In a series of aliphatio ketones and nitro compounds studied, the blue-shifts and consequently the hydrogen bond energies decrease with the decrease in the electron-withdrawing power of the alkyl groups. It is felt that electron-withdrawing groups render the chromophores better proton acceptors, and the alcohols better donors. A linear relationship between n → π* transition frequency and the infrared frequency of ethylenetrithiocarbonate has been found. It is concluded that stabilization of the electronic ground states of solute molecules by electrostatic and/or hydrogen-bond interactions determines the solvent shifts.
Resumo:
A novel method for the construction of tricyclo[5.3.1.0(1,5)]undecane and tricyclo[6.3.1.0(1,6)]dodecane frame work has been developed. Thus the alcohols 6, 18, 21 and 29 undergo Lewis acid-catalysed rearrangement to the tricyclic ketones 5, 19, 22 and 30. Dehydrogenation of 22 to the enone 23 proves the synchronous anti-migration of the methanobridge during the skeletal rearrangement. Finally, one carbon homologation of the ketones 5 and 19 leads to the syntheses of 2-norcedrene 4 and some analogues of funebrene 20 and 30.
Resumo:
Enantiospecific total synthesis of (+)-pinguisenol 1, a sesquiterpene containing a cis-1,2,6,7-tetramethylbicyclo[4.3.0]nonane carbon framework incorporating two vicinal quaternary carbon atoms and four cis-oriented methyl groups on four contiguous carbon atoms, isolated from a liverwort, is described. The orthoester Claisen rearrangement of the allyl alcohol 9, obtained from (R)-carvone, generates the ester 12. Intramolecular cyclopropanation of the diazo ketone 13, derived from the ester 12, furnishes the tricyclic ketone 7. Degradation of the isopropenyl group followed by regioselective reductive cyclopropane ring cleavage transforms compound 7 into the hydroxy ketone 21. Wolff–Kishner reduction of the hydroxy ketone 21 followed by oxidation and Grignard reaction furnishes pinguisenol (+)- 1.
Resumo:
Copper(II) complexes of ethylene/propylene-bis(acetylacetoneimine), Cu(baen) or Cu(bapn), react quickly and quantitatively in aqueous methanol at the methine position with arene diazonium ions in a stepwise manner to yield mono- and di-substituted copper(II) complexes. All the complexes are paramagnetic with μeff∼1.88 B.M. In all the complexes the diazo substituted part of the ligand coordinates to the metal through the agr-nitrogen of the azo group and the imine nitrogen, forming glyoxaliminearylhydrazone type of ligand system. The complexes have been characterized by elemental analysis, electronic, esr, ir and mass spectroscopic methods.
Resumo:
Methanolic hydrogen chloride cyclization of the triketone 8, prepared from the Mannich base 7 and 2-methylcyclopentane-1,3-dione, gives ketones 9 and 10. NaBH4 reduction of 9 followed by Grignard reaction with CH3MgI affords the diol 12. Catalytic hydrogenation of 12 followed by PCC oxidation yields the ketoalcohol 13. Dehydration of 13 with SOCl2/pyridine results in a 1:1 mixture of the endo-14 and exo-15 olefins, separated by chromatography.
Resumo:
The details of the first total synthesis of a natural thapsane lg containing three contiguous quaternary carbon atoms, starting from cyclogeraniol (9) '5 described. The Claisen rearrangement of 9 with methoxypropene in the presence of a catalytic amount of propionic acid produced ketone 10. Rhodium acetate-catalyzed intramolecular cyclopropanation of a-diazo-&keto ester 12, obtained from 10 via 8-keto ester 8, furnished cyclopropyl keto ester 7. Lithium in liquid ammonia reductive cleavage of cyclopropyl compound 7 gave a 1:l mixture of hydrindanone 6 and keto1 13. Wittig methylenation of 6 furnished ester 21. Epoxidation of 21, followed by BF3-OEt2-catalyzed rearrangement of epoxide 23 afforded hemiacetal 25. Treatment of hemiacetal 25 with triethylsilane in trifluoroacetic acid furnished lactone 22, a degradation product of various thapsanes. Finally, DIBAH reduction of lactone 22 generated the thapsane
Resumo:
The synthesis of (±)-3a,4,4,7a-tetramethylhydrindan-2-one 8, containing three contiguous quaternary carbons as present in thapsanes, and the total synthesis of thaps-7(15)-ene 6 and thaps-6-ene 7, probable biogenetic precursors of thapsanes, have been achieved. Thus, orthoester Claisen rearrangement of cyclogeraniol 14, followed by hydrolysis of the resultant ester 16 furnished the eneacid 13. Copper sulfate-catalysed intramolecular cyclopropanation of the diazo ketone 18, derived from the acid 13, generated the cyclopropyl ketone 12. Regiospecific reductive cleavage of cyclopropyl ketone 12 furnished the hydrindanone 8, whereas the diazo ketone 26 furnished the hydrindanone 28avia the cyclopropyl ketone 27. Wittig methylenation of the hydrindanone 28a furnished thaps-7(15)-ene 6, which on isomerisation gave thaps-6-ene 7. Allylic oxidation of thaps-6-ene furnished the thapsenone 31, a degradation product of the natural thapsane 1b.
Resumo:
A simple and versatile method for the synthesis of 1,5-benzodiazepines from o-phenylenediamine and ketones in the presence of solvents and under solvent-free conditions that used an amorphous mesoporous iron aluminophosphate as catalyst was developed. High yields with excellent selectivity were obtained with a wide variety of ketones under mild reaction conditions. The catalyst had the advantages of ease of preparation, ease of handling, simple recovery, reusability, non toxicity, and being inexpensive.
Resumo:
A methodology based on Claisen rearrangement and Wacker oxidation for the spirocyclopentannulation of ketones, and its application to a highly stereoselective first total synthesis of dihydrotoch
Resumo:
The beta-cleavage process in photoexcited ketones of structure RCOCH2X (X = CH2CH3, OCH3, SCH3; R = CH3, Ph) has been studied using the configuration interaction procedure within the framework of MINDO/3. The results explain qualitatively why the beta-cleavage process is faster than the alpha-cleavage process in keto sulfides while in keto ethers the reverse is true.
Resumo:
Diisopropoxytitanium(III) tetrahydroborate, ((PrO)-Pr-1)(2)TiBH4), generated in situ in dichloromethane from diisopropoxytitanium dichloride and benzyltriethylammonium borohydride in a 1:2 ratio selectively reduces aldehydes, ketones, acid chlorides, carboxylic acids, and N-Boc-protected amino acids to the corresponding alcohols in excellent yield under very mild reaction conditions (-78 to 25 degrees C).