940 resultados para Cytochrome c
Resumo:
Cytochrome c biogenesis in Escherichia coli is a complex process requiring at least eight genes (ccmABC DEFGH). One of these genes, ccmG, encodes a thioredoxin-like protein with unusually specific redox activity. Here, we investigate the basis for CcmG function and demonstrate the importance of acidic residues surrounding the redox-active center.
Resumo:
Release of cytochrome c from mitochondria is a major event during apoptosis. Released cytochrome c has been shown to activate caspase-dependent apoptotic signals. In this report, we provide evidence for a novel role of cytochrome c in caspase-independent nuclear apoptosis. We showed that cytochrome c, released from mitochondria upon apoptosis induction, gradually accumulates in the nucleus as evidenced by both immunofluorescence and subcellular fractionation. Parallel to nuclear accumulation of cytochrome c, acetylated histone H2A, but not unmodified H2A, was released from the nucleus to the cytoplasm. Addition of purified cytochrome c to isolated nuclei recapitulated the preferential release of acetylated, but not deacetylated, histone H2A. Cytochrome c was also found to induce chromatin condensation. These results suggest that the nuclear accumulation of cytochrome c may be directly involved in the remodeling of chromatin. Our results provide evidence of a novel role for cytochrome c in inducing nuclear apoptosis.
Resumo:
One innovative thought in biomolecular electronics is the exploitation of electron transfer proteins. Using nature's self assembly techniques, proteins can build highly organized edifices with retained functional activity, and they can serve as platforms for biosensors. In this research work, Yeast Cytochrome C (YCC) is immobilized with a help of a linker molecule, 3-Mercaptopropyltrimethoxysilane (3-MPTS) on a hydroxylated surface of a silicon substrate. Atomic Force Microscopy (AFM) is used for characterization. AFM data shows immobilization of one YCC molecule in between eight grids that are formed by the linker molecules. 3-MPTS monolayers are organized in grids that are 1.2 nm apart. Immobilization of 3-MPTS was optimized using a concentration of 5 mM in a completely dehydrated state for 30 minutes. The functionally active grids of YCC can now be incorporated with Cytochrome C oxidase on a Platinum electrode surface for transfer of electrons in development of biosensors, such as nitrate sensor, that are small in size, cheaper, and easier to manufacture than the top-down approach of fabrication of molecular biodevices
Resumo:
Treatment of hepatocellular cancer with chemotherapeutic agents has limited successin clinical practice and their efficient IC50 concentration would require extremely highdoses of drug administration which could not be tolerated due to systemic side effects.In order to potentiate the efficacy of anticancer agents we explored the potentialof co-treatment with pro-apoptotic Cytochrome c which activates the apoptoticpathway downstream of p53 that is frequently mutated in cancer. To this end weused hybrid iron oxide-gold nanoparticles as a drug delivery system to facilitate theinternalisation of Cytochrome c into cultured HepG2 hepatocellular carcinoma cells.Our results showed that Cytochrome c can be easily conjugated to the gold shell ofthe nanoparticles which are readily taken up by the cells. We used Cytochrome cin concentration (0.2μgmL-1) below the threshold required to induce apoptosis onits own. When the conjugate was administered to cells treated by doxorubicin, itsignificantly reduced its IC50 concentration from 9μgmL-1 to 3.5μgmL-1 as detectedby cell viability assay, and the efficiency of doxorubicin on decreasing viability ofHepG2 cells was significantly enhanced in the lower concentration range between0.01μgmL-1 to 5μgmL-1. The results demonstrate the potential of the application oftherapeutic proteins in activating the apoptotic pathway to complement conventionalchemotherapy to increase its efficacy. The application of hybrid iron oxide-goldnanoparticles can also augment the specificity of drug targeting and could serve as amodel drug delivery system for pro-apoptotic protein targeting and delivery.
Resumo:
J Biol Inorg Chem (2003) 8: 777–786
Resumo:
Cytochrome c552 from Hydrogenobacter thermophilus, a thermophilic bacterium, has been converted into a b type cytochrome, after mutagenesis of both heme-binding cysteines to alanine and expression in the cytoplasm of Escherichia coli. The b type variant is less stable, with the guanidine hydrochloride unfolding midpoint occurring at a concentration 2 M lower than for the wild-type protein. The reduction potential is 75 mV lower than that of the recombinant wild-type protein. The heme can be removed from the b type variant, thus generating an apo protein that has, according to circular dichroism spectroscopy, an α-helical content different from that of the holo b type protein. The latter is readily reformed in vitro by addition of heme to the apo protein. This reforming suggests that previously observed assembly of cytochrome c552, which has the typical class I cytochrome c fold, in the E. coli cytoplasm is a consequence of spontaneous thioether bond formation after binding of heme to a prefolded polypeptide. These observations have implications for the general problem of c type cytochrome biogenesis.
Resumo:
Sulfite-oxidizing molybdoenzymes convert the highly reactive and therefore toxic sulfite to sulfate and have been identified in insects, animals, plants, and bacteria. Although the well studied enzymes from higher animals serve to detoxify sulfite that arises from the catabolism of sulfur-containing amino acids, the bacterial enzymes have a central role in converting sulfite formed during dissimilatory oxidation of reduced sulfur compounds. Here we describe the structure of the Starkeya novella sulfite dehydrogenase, a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit, that reveals the molecular mechanism of intramolecular electron transfer in sulfite-oxidizing enzymes. The close approach of the two redox centers in the protein complex (Mo-Fe distance 16.6 angstrom) allows for rapid electron transfer via tunnelling or aided by the protein environment. The high resolution structure of the complex has allowed the identification of potential through-bond pathways for electron transfer including a direct link via Arg-55A and/or an aromatic-mediated pathway. A potential site of electron transfer to an external acceptor cytochrome c was also identified on the SorB subunit on the opposite side to the interaction with the catalytic SorA subunit.
Resumo:
The Ccm cytochrome c maturation System I catalyzes covalent attachment of heme to apocytochromes c in many bacterial species and some mitochondria. A covalent, but transient, bond between heme and a conserved histidine in CcmE along with an interaction between CcmH and the apocytochrome have been previously indicated as core aspects of the Ccm system. Here, we show that in the Ccm system from Desulfovibrio desulfuricans, no CcmH is required, and the holo-CcmE covalent bond occurs via a cysteine residue. These observations call for reconsideration of the accepted models of System I-mediated c-type cytochrome biogenesis. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
The presence of redox systems in microsomes of brown adipose tissue (BAT) in cold exposed rats was investigated and compared with liver. BAT microsomes showed high activity of lipid peroxidation measured both by the formation of malondialdehyde (MDA) and by oxygen uptake. NADH and NADPH dependent cytochrome c reductase activity were present in both BAT and liver microsomes. Aminopyrine demethylase and aniline hydroxylase activities, the characteristic detoxification enzymes in liver microsomes could not be detected in BAT microsomes. BAT minces showed very poor incorporation of [1-14C]acetate and [2-14C]-mevalonate in unsaponifiable lipid fraction compared to liver. Biosynthesis of cholesterol and ubiquinone, but not fatty acids, and the activity of 3-hydroxy-3-methyl glutaryl CoA reductase appear to be very low in BAT. Examination of difference spectra showed the presence of only cytochrome b 5 in BAT microsomes. In addition to the inability to detect the enzyme activities dependent on cytochrome P-450, a protein with the characteristic spectrum, molecular size in SDS-PAGE and interaction with antibodies in double diffusion test, also could not be detected in BAT microsomes. The high activity of lipid peroxidation in microsomes, being associated with large oxygen uptake and oxidation of NADPH, will also contribute to the energy dissipation as heat in BAT, considered important in thermogenesis.
Resumo:
Semisynthesis of horse heart cytochrome c and site-directed mutagenesis of Saccharomyces cerevisiae (S. c.) iso-1-cytochrome c have been utilized to substitute Ala for the cytochrome c heme axial ligand Met80 to yield ligand-binding proteins (horse heart Ala80cyt c and S.c. Ala80cyt c) with spectroscopic properties remarkably similar to those of myoglobin. Both species of Fe(II)Ala80cyt c form exceptionally stable dioxygen complexes with autoxidation rates 10-30x smaller and O2 binding constants ~ 3x greater than those of myoglobin. The resistance of O2-Fe(II)Ala80cyt c to autoxidation is attributed in part to protection of the heme site from solvent as exhibited by the exceptionally slow rate of CO binding to the heme as well as the low quantum yield of CO photodissociation.
UV/vis, EPR, and paramagnetic NMR spectroscopy indicate that at pH 7 the Fe(III)Ala80cyt c heme is low-spin with axial His-OH- coordination and that below pH ~6.5, Fe(III)Ala80cyt cis high-spin with His-H2O heme ligation. Significant differences in the pH dependence of the 1H NMR spectra of S.c. Fe(III)Ala80cyt c compared to wild-type demonstrate that the axial ligands influence the conformational energetics of cytochrome c.
1H NMR spectroscopy has been utilized to determine the solution structure of the cyanide derivative of S.c. Fe(III)Ala80cyt c. 82% of the resonances in the 1H NMR spectrum of S.c. CN-Fe(III)Ala80cyt c have been assigned through 1D and 2D experiments. The RMSD values after restrained energy minimization of the family of 17 structures obtained from distance geometry calculations are 0.68 ± 0.11 Å for the backbone and 1.32 ± 0.14 Å for all heavy atoms. The solution structure indicates that a tyrosine in the "distal" pocket of CN-Fe(III)Ala80cyt c forms a hydrogen bond with the Fe(III)-CN unit, suggesting that it may play a role analogous to that of the distal histidine in myoglobin in stabilizing the dioxygen adduct.
Resumo:
I. The 3.7 Å Crystal Structure of Horse Heart Ferricytochrome C.
The crystal structure of horse heart ferricytochrome c has been determined to a resolution of 3.7 Å using the multiple isomorphous replacement technique. Two isomorphous derivatives were used in the analysis, leading to a map with a mean figure of merit of 0.458. The quality of the resulting map was extremely high, even though the derivative data did not appear to be of high quality.
Although it was impossible to fit the known amino acid sequence to the calculated structure in an unambiguous way, many important features of the molecule could still be determined from the 3.7 Å electron density map. Among these was the fact that cytochrome c contains little or no α-helix. The polypeptide chain appears to be wound about the heme group in such a way as to form a loosely packed hydrophobic core in the molecule.
The heme group is located in a cleft on the molecule with one edge exposed to the solvent. The fifth coordinating ligand is His 18 and the sixth coordinating ligand is probably neither His 26 nor His 33.
The high resolution analysis of cytochrome c is now in progress and should be completed within the next year.
II. The Application of the Karle-Hauptman Tangent Formula to Protein Phasing.
The Karle-Hauptman tangent formula has been shown to be applicable to the refinement of previously determined protein phases. Tests were made with both the cytochrome c data from Part I and a theoretical structure based on the myoglobin molecule. The refinement process was found to be highly dependent upon the manner in which the tangent formula was applied. Iterative procedures did not work well, at least at low resolution.
The tangent formula worked very well in selecting the true phase from the two possible phase choices resulting from a single isomorphous replacement phase analysis. The only restriction on this application is that the heavy atoms form a non-centric cluster in the unit cell.
Pages 156 through 284 in this Thesis consist of previously published papers relating to the above two sections. References to these papers can be found on page 155.
Resumo:
It is discovered that SBA-15 (santa barbara amorphous) can provide the favorable microenvironments and optimal direct electron-transfer tunnels (DETT) of immobilizing cytochrome c (Cyt c) by the preferred orientation on it. A high-redox potential (254 mV vs. Ag/AgCl) was obtained on glassy carbon (GC) electrode modified by immobilizing Cyt c on rod-like SBA-15. With ultraviolet-visible (UV-vis), circular dichroism (CD), FTIR and cyclic voltammetry, it was demonstrated that immobilization made Cyt c exhibits stable and ideal electrochemical characteristics while the biological activity of immobilized Cyt c is retained as usual.
Resumo:
A matrix-assisted laser desorption ionization time-of-flight mass spectrometry(MALDI-TOF—MS) technique was used for analysis of moleculear weight of cytochrome C.The effects of three kinds of matrix,such as 2,5-dihydroxybenzoic acid(DHB),a-cyano-4-hydroxycinnamic acid(a-CHC) and sinapinic acid(SA),were used to compared and a suitable a-CHC was found.Experimental data showed that this method was properable to analysis of the congeneric biochemical samples.
pH-dependent conformational changes of ferricytochrome c induced by electrode surface microstructure
Resumo:
pH-dependent processes of bovine heart ferricytochrome c have been investigated by electronic absorption and circular dichroism (CD) spectra at functionalized single-wall carbon 'nanotubes (SWNTs) modified glass carbon electrode (SWNTs/ GCE) using a long optical path thin layer cell. These methods enabled the pH-dependent conformational changes arising from the heme structure change to be monitored. The spectra obtained at functionalized SWNTs/GCE reflect electrode surface microstructure-dependent changes for pH-induced protein conformation, pK(a) of alkaline transition and structural microenvironment of the ferricytochrome c heme. pH-dependent conformational distribution curves of ferricytochrome c obtained by analysis of in situ CD spectra using singular value decomposition least square (SVDLS) method show that the functionalized SWNTs can retain native conformational stability of ferricytochrome c during alkaline transition.
Resumo:
细胞色素c(Cytochrome c, Cyt c)是生物体中最常见的氧化-还原蛋白质, 研究其在电极上的直接电化学, 对于理解和认识生命体内的电子转移机制具有重要意义[1]. Cyt c与裸固体电极表面的直接接触通常会使其失去生物活性, 因此, Cyt c的电化学研究常借助于媒介体以实现其与电极之间的电子转移[2]. 纳米金属氧化物模板的表面积大且化学和光化学性质稳定, 被广泛应用于太阳能电池[3]和金属沉积[4]等领域. 本文研究氧化铝(AAO)模板对4,4′-二硫二吡啶存在下Cyt c直接电化学促进作用.