994 resultados para Conocimiento matemático


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Efectuar una sistematización sobre la situación actual de la investigación sobre los procesos de aprendizaje en matemáticas, y su relación con la evolución histórica del uso educativo del computador. Contextualizar del estado actual de dicha investigación didáctica en relación con la utilización como recurso tecnológico de los sistemas hipermediales. Analizar en el marco de las teorías sobre el procesamiento de la información, sobre el conocimiento matemático y la función que, al respecto, cumple y desarrolla la tecnología hipermedia. Analizar los estudios y aportaciones que se efectúan en el campo del aprendizaje de las matemáticas sobre soporte hipermedia. Proponer análisis y desarrollos específicos en el ámbito del diseño de materiales instructivos para la enseñanza elemental de las matemáticas. Particularmente sobre los llamados diseños hipermedia adaptativos.. Investigación histórica.. En esta tesis se pretende una aproximación dentro de un campo específico de enseñanza-aprendizaje: las matemáticas elementales. Muchas de sus conclusiones son aplicables a otras áreas de conocimiento implicadas en la enseñanza elemental. Analiza los 'modelos' de secuencias de instrucción cuando se tienen en cuenta las investigaciones sobre procesos cognitivos en el aprendizaje de las matemáticas elementales y las posibilidades de mediación instrumental que permiten los computadores y las aplicaciones hipermedia. Es en este ámbito, en donde interseccionan las teorías y los estudios sobre el aprendizaje de las matemáticas - especialmente fecundo en los últimos cincuenta años -, las investigaciones sobre el procesamiento de la información, consolidadas también, a lo largo de la segunda mitad de este siglo y las recientes y nuevas tecnologías de la información y la comunicación.. La investigación analiza desde una perspectiva pedagógica, el confrontar la aplicación más característica de las Tecnologías de la Información y la Comunicación al campo de la educación, el hipermedia, y el sector curricular, dentro del ámbito de las matemáticas elementales. En este marco contextual, analiza el proceso de aprendizaje de las matemáticas elementales, cuando en su desarrollo de enseñanza intervienen computadores y, en especial, sistemas hipermedia. Se enmarca en el estudio de las relaciones de comunicación pedagógica, cuando la mediación comunicativa en los diseños instructivos, sobre los que se articula el currículum, incluye soportes hipermedia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monográfico con el título: 'Enseñar matemáticas'

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Revisar la metodología: Elaborar la organización de los Grupos Focales. Planificar el desarrollo de las observaciones de clases, si se optara por incluirlas. Rediscusión teórico-metodológica: Revisión de conceptualizaciones sobre “Aprender Matemáticas” y su operacionalización metodológica. Diseñar instrumentos: Redactar los protocolos y el guión correspondiente, a los Grupos Focales, y eventualmente, a las observaciones de clases. Seleccionar las unidades de análisis: Seleccionar los sujetos que participarán de los Grupos Focales, y eventualmente, las clases para la observación. Planificar y gestionar el ingreso al campo: Establecer el vínculo con las instituciones educativas, para garantizar el desarrollo del trabajo de campo. Elaborar una publicación para una revista científica: Escribir un artículo sobre los avances de la indagación y remitir-lo a una revista especializada para su publicación. Elaborar trabajos para un evento científico: Elaborar trabajos para presentar en un un evento científico re-levante. Recopilar datos empíricos y documentales: Desarrollar el trabajo de campo (grupos focales, entrevistas). Sistematizar los datos: Desgrabar las sesiones de los Grupos Focales, y sistematizar los registros de las observaciones. Organizar los datos recopilados para facilitar su análisis. Analizar los datos: Establecer las relaciones significativas entre los datos y los conceptos. Presentación de Proyecto Especial: Diseñar y presentar un proyecto a la Convocatoria de Proyectos de Investigación Científica y Tecnológica de la Universidad Nacional de Misiones 2012 -2013, realizada por la Secretaría General de Ciencia y Tecnología de la UNaM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En el proyecto anterior, nos habíamos planteado abordar cuales eran las representaciones sociales (RA) de los estudiantes de Ingeniería respecto al conocimiento matemático (CM) y como incidían dichas RS en el aprendizaje de las nociones matemáticas. Ello se debía, a que las marcas que derivan del contexto social y las prácticas sociales, transforman y estructuran las situaciones en las que los objetos de conocimiento se presentan; ubicándolos en sistemas de representación social que no sólo se producen, sino también se recrean y modifican en dichas situaciones, y que otorgan sentido a los conocimientos de los alumnos. En el transcurrir de dicha indagación, tomamos conciencia que describir, analizar e interpretar las RS era una tarea extensa y compleja, y por ello reformulamos el proyecto limitándolo a esa actividad y posponiendo para un nuevo proyecto estudiar los vínculos entre RS y aprendizaje de la matemática. En este nuevo proyecto, de conformidad con la Teoría de las Representaciones Sociales (TRS) y focalizando nuestro interés en el aprendizaje de la Matemática en las carreras de Ingeniería, nos proponemos caracterizar como las representaciones sociales acerca del conocimiento matemático de sus estudiantes se relacionan con el aprendizaje de la disciplina. El paradigma de investigación será predominantemente cualitativo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El abordaje desde un enfoque interdisciplinario de ciertas problemáticas de la Geometría y del Arte no forma, por lo general, parte de la currícula de formación de grado ni de los profesores en matemática ni de los profesionales del diseño. En los cursos de posgrado GEOMETRÍA Y ARTE, niveles I y II: Morfogeneradores geométricos en el diseño se propone a los cursantes analizar las formas geométricas que subyacen en ciertos hechos de diseño, construyendo conocimientos teóricos y prácticos sobre las relaciones entre geometría y arte, a partir de una perspectiva que integra ambas disciplinas. Desde el marco didáctico que organiza la propuesta, para aprender los conocimientos matemáticos específicos los alumnos resuelven problemas, apropiándose de los modos de hacer y comunicar de dicha disciplina, otorgando así sentido al conocimiento matemático, que es considerado un producto cultural. La Geometría que se estudia es la implicada a partir de sus aplicaciones en el campo del diseño, como generadora de formas. Por otra parte, en las obras plásticas y de diseño que se indagan, se analizan patrones de orden y belleza y se considera el aspecto geométrico de su proceso creativo. Así, la simbiosis Geometría y Arte, constituye una efectiva herramienta para la labor específica del cursante, quien podrá transferir los conocimientos y metodología de análisis aprendidos, ya sea al ámbito educativo y/o al campo proyectual. Como ejemplo, se presenta el caso de la Vesica Piscis, forma característica de la Geometría sagrada de la Edad Media.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El abordaje desde un enfoque interdisciplinario de ciertas problemáticas de la Geometría y del Arte no forma, por lo general, parte de la currícula de formación de grado ni de los profesores en matemática ni de los profesionales del diseño. En los cursos de posgrado GEOMETRÍA Y ARTE, niveles I y II: Morfogeneradores geométricos en el diseño se propone a los cursantes analizar las formas geométricas que subyacen en ciertos hechos de diseño, construyendo conocimientos teóricos y prácticos sobre las relaciones entre geometría y arte, a partir de una perspectiva que integra ambas disciplinas. Desde el marco didáctico que organiza la propuesta, para aprender los conocimientos matemáticos específicos los alumnos resuelven problemas, apropiándose de los modos de hacer y comunicar de dicha disciplina, otorgando así sentido al conocimiento matemático, que es considerado un producto cultural. La Geometría que se estudia es la implicada a partir de sus aplicaciones en el campo del diseño, como generadora de formas. Por otra parte, en las obras plásticas y de diseño que se indagan, se analizan patrones de orden y belleza y se considera el aspecto geométrico de su proceso creativo. Así, la simbiosis Geometría y Arte, constituye una efectiva herramienta para la labor específica del cursante, quien podrá transferir los conocimientos y metodología de análisis aprendidos, ya sea al ámbito educativo y/o al campo proyectual. Como ejemplo, se presenta el caso de la Vesica Piscis, forma característica de la Geometría sagrada de la Edad Media.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El abordaje desde un enfoque interdisciplinario de ciertas problemáticas de la Geometría y del Arte no forma, por lo general, parte de la currícula de formación de grado ni de los profesores en matemática ni de los profesionales del diseño. En los cursos de posgrado GEOMETRÍA Y ARTE, niveles I y II: Morfogeneradores geométricos en el diseño se propone a los cursantes analizar las formas geométricas que subyacen en ciertos hechos de diseño, construyendo conocimientos teóricos y prácticos sobre las relaciones entre geometría y arte, a partir de una perspectiva que integra ambas disciplinas. Desde el marco didáctico que organiza la propuesta, para aprender los conocimientos matemáticos específicos los alumnos resuelven problemas, apropiándose de los modos de hacer y comunicar de dicha disciplina, otorgando así sentido al conocimiento matemático, que es considerado un producto cultural. La Geometría que se estudia es la implicada a partir de sus aplicaciones en el campo del diseño, como generadora de formas. Por otra parte, en las obras plásticas y de diseño que se indagan, se analizan patrones de orden y belleza y se considera el aspecto geométrico de su proceso creativo. Así, la simbiosis Geometría y Arte, constituye una efectiva herramienta para la labor específica del cursante, quien podrá transferir los conocimientos y metodología de análisis aprendidos, ya sea al ámbito educativo y/o al campo proyectual. Como ejemplo, se presenta el caso de la Vesica Piscis, forma característica de la Geometría sagrada de la Edad Media.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En 1905, aparecen en la revista "Annalen der physik" tres artículos que revolucionarán las ciencias físicas y pondrán en jaque los asentados conceptos newtonianos de Espacio y Tiempo. La formulación de la Teoría de la Relatividad por Albert Einstein pone en crisis el valor absoluto de estos conceptos, y permite proponer nuevas reflexiones a propósito de su concepción dentro del campo de la física. Esta revolución ¿podría extrapolarse al campo de la arquitectura, donde Espacio y Tiempo tienen un papel protagonista? Hay que entender la complejidad del hecho arquitectónico y las innumerables variables que participan de su definición. Se estudia en esta Tesis Doctoral un aspecto muy concreto: cómo un paradigma (la Teoría de la Relatividad) puede intervenir y modificar, o no, la Arquitectura. Se plantea para ello ir al origen; desentrañar el momento de interacción entre la Teoría de la Relatividad y la Teoría de la Arquitectura, que permita determinar si aquella influyó sobre ésta en los escritos teóricos de las vanguardias aplicados a la Arquitectura. “Después de Einstein. Una arquitectura para una teoría” buscará los puntos de conexión de la Teoría de la Relatividad con la teoría arquitectónica de las vanguardias de principio del siglo XX, su influencia, la contaminación entre una y otra, con posibles resultados arquitectónicos a partir de esta interacción, capaz de definir nuevos argumentos formales para un nuevo lenguaje enArquitectura. Annalen der physik Después de Einstein. Una arquitectura para una teoría Para ello la Tesis se estructura en cuatro capítulos. El primero expone el ámbito geográfico y cronológico donde se desarrolla la Teoría de la Relatividad con la repercusión teórica que tiene para el arte, en función de una nueva definición de espacio vinculado al tiempo, como evento que se desarrolla en un ámbito cuatridimensional; la indeterminación de las medidas de espacio y de las medidas de tiempo, y la importancia de entender la materia como energía. El segundo capítulo estudia los movimientos de vanguardia coetáneos a la eclosión de la Relatividad, enmarcados en su ámbito geográfico más próximo. El cubismo se muestra como movimiento que participa ocasionalmente de las matemáticas y la geometría, bajo el influjo del científico Henri Poincaré y las geometrías no euclidianas. El futurismo indaga en los avances de la ciencia desde una cierta lejanía, cierta falta de rigor o profundidad científica para extraer las leyes de su nuevo idealismo plástico constructivo, definiendo e interpretando su Universo a partir de los avances de la ciencia, en respuesta a la crisis del espacio y del tiempo newtonianos. El lenguaje científico se encuentra presente en conceptos como "simultaneidad" (Boccioni), "expansión esférica de la luz en el espacio" (Severini y Carrá), "cuatridimensionalidad", "espacio-tiempo", "aire-luz-fuerza", "materia y energía" que paralelamente conforman el cuerpo operacional de la teoría de Einstein. Si bien no es posible atribuir a la Teoría de la Relatividad un papel protagonista como referente para el pensamiento artístico, en 1936, con la aparición del manifiesto Dimensionista, se atribuyen explícitamente a las teorías de Einstein las nuevas ideas de espacio-tiempo del espíritu europeo seguido por cubistas y futuristas. El tercer capítulo describe cómo la Teoría de la Relatividad llegó a ser fuente de inspiración para la Teoría de la Arquitectura. Estructurado en tres subcapítulos, se estudia el autor principal que aportó para la Arquitectura conceptos e ideas extrapoladas de la Teoría de la Relatividad después de su estudio e interpretación (Van Doesburg), dónde se produjeron las influencias y puntos de contacto (Lissitzky, Eggeling, Moholy-Nagy) y cómo fueron difundidas a través de la arquitectura (Einsteinturm de Mendelsohn) y de las revistas especializadas. El cuarto capítulo extrae las conclusiones del estudio realizado en esta Tesis, que bien pudiera resumir MoholyNagy en su texto "Vision inmotion" (1946) al comentar: "Ya que el "espacio-tiempo" puede ser un término engañoso, tiene que hacerse especialmente hincapié en que los problemas de espacio-tiempo en el arte no están necesariamente basados en la Teoría de la Relatividad de Einstein. Esto no tiene intención de descartar la relevancia de su teoría para las artes. Pero los artistas y los laicos rara vez tienen el conocimiento matemático para visualizar en fórmulas científicas las analogías con su propio trabajo. La terminología de Einstein del "espacio-tiempo" y la "relatividad" ha sido absorbida por nuestro lenguaje diario." ABSTRACT. "AFTER EINSTEIN:ANARCHITECTUREFORATHEORY." In 1905, three articles were published in the journal "Annalen der Physik ". They revolutionized physical sciences and threw into crisis the newtonian concepts of Space and Time. The formulation of the Theory of Relativity by Albert Einstein put a strain on the absolute value of these concepts, and proposed new reflections about them in the field of Physics. Could this revolution be extrapolated to the field of Architecture, where Space and Time have a main role? It is necessary to understand the complexity of architecture and the countless variables involved in its definition. For this reason, in this PhD. Thesis, we study a specific aspect: how a paradigm (Theory of Relativity) can intervene and modify -or not- Architecture. It is proposed to go back to the origin; to unravel the moment in which the interaction between the Theory of Relativity and the Theory of Architecture takes place, to determine whether the Theory of Relativity influenced on the theoretical avant-garde writings applied to Architecture. "After Einstein.An architecture for a theory " will search the connection points between the Theory of Relativity and architectural avant-garde theory of the early twentieth century, the influence and contamination between them, giving rise to new architectures that define new formal arguments for a new architectural language. Annalen der Physik This thesis is divided into four chapters. The first one describes the geographical and chronological scope in which the Theory of Relativity is developed showing its theoretical implications in the field of art, according to a new definition of Space linked to Time, as an event that takes place in a fourdimensional space; the indetermination of the measurement of space and time, and the importance of understanding "matter" as "energy". The second chapter examines the avant-garde movements contemporary to the theory of relativity. Cubism is shown as an artist movement that occasionally participates in mathematics and geometry, under the influence of Henri Poincaré and non-Euclidean geometries. Futurism explores the advances of science at a certain distance, with lack of scientific rigor to extract the laws of their new plastic constructive idealism. Scientific language is present in concepts like "simultaneity" (Boccioni), "expanding light in space" (Severini and Carra), "four-dimensional space", "space-time", "light-air-force," "matter and energy" similar to the operational concepts of Einstein´s theory. While it is not possible to attribute a leading role to the Theory of Relativity, as a benchmark for artistic laws, in 1936, with the publication of the Dimensionist manifest, the new ideas of space-time followed by cubist and futurist were attributed to the Einstein's theory. The third chapter describes how the Theory of Relativity became an inspiration for the architectural theory. Structured into three subsections, we study the main author who studied the theory of relativity and ,as a consequence, contributed with some concepts and ideas to the theory of architecture (Van Doesburg), where influences and contact points took place (Lissitzky, Eggeling, Moholy-Nagy) and how were disseminated throughArchitecture (Einsteinturm, by Mendelsohn) and journals. The fourth chapter draws the conclusions of this PhD. Thesis, which could be well summarized by Moholy Nagy in his text "Vision in Motion" (1946): vi Since "space-time" can be a misleading term, it especially has to be emphasized that the space-time problems in the arts are not necessarily based upon Einstein´s Theory of Relativity. This is not meant to discount the relevance of his theory to the arts. But artists and laymen seldom have the mathematical knowledge to visualize in scientific formulae the analogies to their own work. Einstein's terminology of "space-time" and "relativity" has been absorbed by our daily language.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La planificación curricular (PC) constituye una de las actividades y competencias más importantes de los docentes en los distintos niveles de la educación escolar en general. Por esta razón en el trabajo de maestría que presentamos nos proponemos reflexionar con los participantes sobre los aportes que puede hacer el Análisis Didáctico Matemático (ADM) en general, y el Análisis Didáctico Fenomenológico (ADF) en particular, al desarrollo de los procesos de PC y de formación profesional relativa a la PC por parte de los docentes de matemáticas de EBP. Para esto nos enmarcamos en la propuesta teórica de los organizadores del currículo (Rico, 1998; Castro, 2001; Rico y Segovia, 2001; Bedoya, 2002) y sobre el ADF (Freudenthal, 1983; Puig, 1997). Desde el punto de vista metodológico se trabajó mediante estrategias de investigación y sistematización de experiencias educativas, que articulan en el diseño procesos de investigación acción y estudio de casos. Se llevaron a cabo talleres de formación docente en los que se propuso la planificación de una unidad didáctica (UD) sobre el CME (Conocimiento Matemático Escolar) de estadística descriptiva para grado quinto, a fin de analizarlas a la luz de las nociones conceptuales y concepciones de los maestros sobre el proceso de PC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pesar de que la matemática está presente en casi todas las actividades que realiza el ser humano, el proceso de enseñanza aprendizaje realizado en la escuela, facilita al niño la aprehensión del conocimiento matemático de manera estructurada, la metodología y los recursos utilizados deben ser motivadores para que este aprendizaje pueda llegar a ser eficiente. En el proceso educativo, sabemos que el triángulo formado por el maestro, el alumno y los contenidos a estudiar son los elementos claves, la participación de cada uno de ellos es determinante para que los resultados sean óptimos, por lo tanto, las metodologías empleadas por el docente deben ser las adecuadas para lograr que el niño al ingresar a la escuela adquiera nuevos conocimientos, que las actividades cotidianas generadoras de experiencia sirvan de base para estos nuevos conocimientos; que su curiosidad natural sea el acicate en la búsqueda creativa de soluciones; que en el desarrollo de las actividades de aprendizaje no se busque la memorización de conceptos sino la interpretación de las situaciones problemáticas para encontrarle gusto al aprendizaje.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Existe abundante evidencia de que los niños pequeños son capaces de desarrollar un conocimiento matemático y que las destrezas aritméticas de estos niños son predictores de su desempeño académico futuro. También existe un acuerdo común de que la calidad de la educación matemática inicial tiene una importante influencia en el aprendizaje posterior de los niños. En Ecuador hay escasos estudios sobre las competencias matemáticas tempranas de los niños y sobre su enseñanza. Por ello, se inició un estudio para (1) evaluar las competencias numéricas de los niños de pre-escolar y kindergarten (primero de básica) que asisten a una escuela pública de Cuenca, con el objetivo de analizar críticamente su pensamiento y razonamiento numérico; y (2) examinar las prácticas y creencias de los profesores con relación a la enseñanza de la matemática y a las competencias matemáticas de los niños. La aplicación del Test de Conocimiento Numérico (Griffin, 2005) demostró que la mayoría de los niños participantes no habían desarrollado habilidades numéricas básicas. Adicionalmente, los profesores expresaron una fuerte creencia de que los niños pequeños no son capaces de tener un pensamiento matemático. Como consecuencia, las actividades matemáticas que realizan los niños y profesores son desarrolladas de manera insuficiente. Las implicaciones científicas y prácticas de estos resultados son discutidas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El analizar las relaciones epistemológicas entre prácticas sociales y el conocimiento matemático es uno de los objetivos de una aproximación teórica denominada socioepistemología. Esto permite informar acerca de cómo se construye dicho conocimiento desde una perspectiva de la actividad que desarrollan los humanos interactivamente y tomar en cuenta no sólo la producción matemática final, sino las herramientas y los argumentos que entran en juego. Una vez que se reconoce este origen social, podemos ver qué ocurre en sistemas didácticos por medio del diseño de secuencias cuyo origen es precisamente una socioepistemología del saber. La situación que se genera tiene pues la intención, de hacer patente la relación entre práctica y saber, en particular, entre la predicción y la periodicidad.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta propuesta didáctica se inscribe en la enseñanza, plantea un plan de intervención pedagógica para mejorar el rendimiento de los alumnos de cuarto grado, en la resolución de problemas matemáticos, reconociendo a éstos como un medio que permite al alumno llegar al conocimiento matemático por sus propios medios, respetando sus estrategias y canalizando sus conclusiones. El planteamiento de problemas se propone a través de dos modelos: el modelo generativo y el modelo de estructuración. En el primero, la operación queda subordinada al pensamiento, es decir, se pondera la estrategia como vía de solución y se busca, después, la operación válida para dar cuerpo al proceso de resolución. El modelo de estructuración, ayuda a constituir mentalmente las partes que componen el problema. En ambos modelos se considera al “desafío” (en este caso, acertijos) como elemento clave para motivar a los alumnos a la resolución de problemas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este reporte de investigación se presentan los avances de un proyecto acerca de las formas de construcción de conocimiento matemático que proporcionan experiencias de aprendizaje basadas en actividades de simulación y modelación en el estudio de situaciones de la variación y de la acumulación de cantidades que varían continuamente. En la investigación se toma como referencia la aproximación socioepistemológica. Bajo ese paradigma se concibe el cálculo como el cuerpo de conocimientos que permite el estudio de los fenómenos de variación y la modelación se concibe como una forma de construir conocimiento matemático que pertenece a las prácticas sociales. Se presentan aquí las primeras exploraciones en un contexto del estudio del movimiento. La forma de trabajar las representaciones asociadas al movimiento es con el uso de sensores y de transductores que transforman la información en conjuntos de datos que diversos programas manipulan mostrando representaciones gráficas en calculadoras.