565 resultados para Conjecture de Yau
Resumo:
Extended self-similarity (ESS), a procedure that remarkably extends the range of scaling for structure functions in Navier-Stokes turbulence and thus allows improved determination of intermittency exponents, has never been fully explained. We show that ESS applies to Burgers turbulence at high Reynolds numbers and we give the theoretical explanation of the numerically observed improved scaling at both the IR and UV end, in total a gain of about three quarters of a decade: there is a reduction of subdominant contributions to scaling when going from the standard structure function representation to the ESS representation. We conjecture that a similar situation holds for three-dimensional incompressible turbulence and suggest ways of capturing subdominant contributions to scaling.
Resumo:
Microfinance institutions (MFIs) are constrained by double bottom-lines: meeting social obligations (the first bottom-line) and obtaining financial self-sufficiency (the second bottom-line). The proponents of the first bottom-line, however, are increasingly concerned that there is a trade-off between these two bottom-lines—i.e., getting hold of financial self-sufficiency may lead MFIs to drift away from their original social mission of serving the very poor, commonly known as mission drift in microfinance which is still a controversial issue. This study aims at addressing the concerns for mission drift in microfinance in a performance analysis framework. Chapter 1 deals with theoretical background, motivation and objectives of the topic. Then the study explores the validity of three major and related present-day concerns. Chapter 2 explores the impact of profitability on outreach-quality in MFIs, commonly known as mission drift, using a unique panel database that contains 4-9 years’ observations from 253 MFIs in 69 countries. Chapter 3 introduces factor analysis, a multivariate tool, in the process of analysing mission drift in microfinance and the exercise in this chapter demonstrates how the statistical tool of factor analysis can be utilised to examine this conjecture. In order to explore why some microfinance institutions (MFIs) perform better than others, Chapter 4 looks at factors which have an impact on several performance indicators of MFIs—profitability or sustainability, repayment status and cost indicators—based on quality-data on 353 institutions in 77 countries. The study also demonstrates whether such mission drift can be avoided while having self-sustainability. In Chapter 5 we examine the impact of capital and financing structure on the performance of microfinance institutions where estimations with instruments have been performed using a panel dataset of 782 MFIs in 92 countries for the period 2000-2007. Finally, Chapter 6 concludes the study by summarising the results from the previous chapters and suggesting some directions for future studies.
Resumo:
Given an n x n complex matrix A, let mu(A)(x, y) := 1/n vertical bar{1 <= i <= n, Re lambda(i) <= x, Im lambda(i) <= y}vertical bar be the empirical spectral distribution (ESD) of its eigenvalues lambda(i) is an element of C, i = l, ... , n. We consider the limiting distribution (both in probability and in the almost sure convergence sense) of the normalized ESD mu(1/root n An) of a random matrix A(n) = (a(ij))(1 <= i, j <= n), where the random variables a(ij) - E(a(ij)) are i.i.d. copies of a fixed random variable x with unit variance. We prove a universality principle for such ensembles, namely, that the limit distribution in question is independent of the actual choice of x. In particular, in order to compute this distribution, one can assume that x is real or complex Gaussian. As a related result, we show how laws for this ESD follow from laws for the singular value distribution of 1/root n A(n) - zI for complex z. As a corollary, we establish the circular law conjecture (both almost surely and in probability), which asserts that mu(1/root n An) converges to the uniform measure on the unit disc when the a(ij) have zero mean.
Resumo:
Self-similarity, a concept taken from mathematics, is gradually becoming a keyword in musicology. Although a polysemic term, self-similarity often refers to the multi-scalar feature repetition in a set of relationships, and it is commonly valued as an indication for musical coherence and consistency . This investigation provides a theory of musical meaning formation in the context of intersemiosis, that is, the translation of meaning from one cognitive domain to another cognitive domain (e.g. from mathematics to music, or to speech or graphic forms). From this perspective, the degree of coherence of a musical system relies on a synecdochic intersemiosis: a system of related signs within other comparable and correlated systems. This research analyzes the modalities of such correlations, exploring their general and particular traits, and their operational bounds. Looking forward in this direction, the notion of analogy is used as a rich concept through its two definitions quoted by the Classical literature: proportion and paradigm, enormously valuable in establishing measurement, likeness and affinity criteria. Using quantitative qualitative methods, evidence is presented to justify a parallel study of different modalities of musical self-similarity. For this purpose, original arguments by Benoît B. Mandelbrot are revised, alongside a systematic critique of the literature on the subject. Furthermore, connecting Charles S. Peirce s synechism with Mandelbrot s fractality is one of the main developments of the present study. This study provides elements for explaining Bolognesi s (1983) conjecture, that states that the most primitive, intuitive and basic musical device is self-reference, extending its functions and operations to self-similar surfaces. In this sense, this research suggests that, with various modalities of self-similarity, synecdochic intersemiosis acts as system of systems in coordination with greater or lesser development of structural consistency, and with a greater or lesser contextual dependence.
Resumo:
In (2+1)-dimensional quantum electrodynamics with massless photons and massive matter fields, it is shown that the mass renormalization of the latter is infrared divergent at one loop. This result remains unchanged at two loops. A simple argument based on a similar divergence of the Coulomb potential leads us to conjecture that charged states are not observable in this model. This argument holds in 1+1 dimensions also.
Resumo:
The statistical properties of fractional Brownian walks are used to construct a path integral representation of the conformations of polymers with different degrees of bond correlation. We specifically derive an expression for the distribution function of the chains’ end‐to‐end distance, and evaluate it by several independent methods, including direct evaluation of the discrete limit of the path integral, decomposition into normal modes, and solution of a partial differential equation. The distribution function is found to be Gaussian in the spatial coordinates of the monomer positions, as in the random walk description of the chain, but the contour variables, which specify the location of the monomer along the chain backbone, now depend on an index h, the degree of correlation of the fractional Brownian walk. The special case of h=1/2 corresponds to the random walk. In constructing the normal mode picture of the chain, we conjecture the existence of a theorem regarding the zeros of the Bessel function.
Resumo:
Let G be a simple, undirected, finite graph with vertex set V(G) and edge set E(C). A k-dimensional box is a Cartesian product of closed intervals a(1), b(1)] x a(2), b(2)] x ... x a(k), b(k)]. The boxicity of G, box(G) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional boxes, i.e. each vertex is mapped to a k-dimensional box and two vertices are adjacent in G if and only if their corresponding boxes intersect. Let P = (S, P) be a poset where S is the ground set and P is a reflexive, anti-symmetric and transitive binary relation on S. The dimension of P, dim(P) is the minimum integer l such that P can be expressed as the intersection of t total orders. Let G(P) be the underlying comparability graph of P. It is a well-known fact that posets with the same underlying comparability graph have the same dimension. The first result of this paper links the dimension of a poset to the boxicity of its underlying comparability graph. In particular, we show that for any poset P, box(G(P))/(chi(G(P)) - 1) <= dim(P) <= 2box(G(P)), where chi(G(P)) is the chromatic number of G(P) and chi(G(P)) not equal 1. The second result of the paper relates the boxicity of a graph G with a natural partial order associated with its extended double cover, denoted as G(c). Let P-c be the natural height-2 poset associated with G(c) by making A the set of minimal elements and B the set of maximal elements. We show that box(G)/2 <= dim(P-c) <= 2box(G) + 4. These results have some immediate and significant consequences. The upper bound dim(P) <= 2box(G(P)) allows us to derive hitherto unknown upper bounds for poset dimension. In the other direction, using the already known bounds for partial order dimension we get the following: (I) The boxicity of any graph with maximum degree Delta is O(Delta log(2) Delta) which is an improvement over the best known upper bound of Delta(2) + 2. (2) There exist graphs with boxicity Omega(Delta log Delta). This disproves a conjecture that the boxicity of a graph is O(Delta). (3) There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n vertices with a factor of O(n(0.5-epsilon)) for any epsilon > 0, unless NP=ZPP.
Resumo:
An exact numerical calculation of ensemble-averaged length-scale-dependent conductance for the one-dimensional Anderson model is shown to support an earlier conjecture for a conductance minimum. The numerical results can be understood in terms of the Thouless expression for the conductance and the Wigner level-spacing statistics.
Resumo:
We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flow is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.
Resumo:
In the theoretical treatments of the dynamics of solvation of a newly created ion in a dipolar solvent, the self-motion of the solute is usually ignored. Recently, it has been shown that for a light ion the translational motion of the ion can significantly enhance its own rate of solvation. Therefore, solvation itself may not be the rate determining step in the equilibration. Instead, the rate determining step is the search of the low energy configuration which serves to localize the light ion. In this article a microscopic calculation of the probability distribution of the interaction energy of the nascent charge with the dipolar solvent molecules is presented in order to address this problem of solute trapping. It is found that to a good approximation, this distribution is Gaussian and the second moment of this distribution is exactly equal to the half of its own solvation energy. It is shown that this is in excellent agreement with the simulation results that are available for the model Brownian dipolar lattice and for liquid acetonitrile. If the distortion of the solvent by the ion is negligible then the same relation gives the energy distribution for the solvated ion, with the average centered at the final equilibrium solvation energy. These results are expected to be useful in understanding various chemical processes in dipolar liquids. Another interesting outcome of the present study is a simple dynamic argument that supports Onsager's ''inverse snow-ball'' conjecture of solvation of a light ion. A simple derivation of the semi-phenomenological relation between the solvation time correlation function and the single particle orientation, reported recently by Maroncelli et al. (J. Phys. Chem. 97 (1993) 13), is also presented.
Resumo:
Tutte (1979) proved that the disconnected spanning subgraphs of a graph can be reconstructed from its vertex deck. This result is used to prove that if we can reconstruct a set of connected graphs from the shuffled edge deck (SED) then the vertex reconstruction conjecture is true. It is proved that a set of connected graphs can be reconstructed from the SED when all the graphs in the set are claw-free or all are P-4-free. Such a problem is also solved for a large subclass of the class of chordal graphs. This subclass contains maximal outerplanar graphs. Finally, two new conjectures, which imply the edge reconstruction conjecture, are presented. Conjecture 1 demands a construction of a stronger k-edge hypomorphism (to be defined later) from the edge hypomorphism. It is well known that the Nash-Williams' theorem applies to a variety of structures. To prove Conjecture 2, we need to incorporate more graph theoretic information in the Nash-Williams' theorem.
Resumo:
A swarm is a temporary structure formed when several thousand honey bees leave their hive and settle on some object such as the branch of a tree. They remain in this position until a suitable site for a new home is located by the scout bees. A continuum model based on heat conduction and heat generation is used to predict temperature profiles in swarms. Since internal convection is neglected, the model is applicable only at low values of the ambient temperature T-a. Guided by the experimental observations of Heinrich (1981a-c, J. Exp. Biol. 91, 25-55; Science 212, 565-566; Sci. Am. 244, 147-160), the analysis is carried out mainly for non-spherical swarms. The effective thermal conductivity is estimated using the data of Heinrich (1981a, J. Exp. Biol. 91, 25-55) for dead bees. For T-a = 5 and 9 degrees C, results based on a modified version of the heat generation function due to Southwick (1991, The Behaviour and Physiology of Bees, PP 28-47. C.A.B. International, London) are in reasonable agreement with measurements. Results obtained with the heat generation function of Myerscough (1993, J. Theor. Biol. 162, 381-393) are qualitatively similar to those obtained with Southwick's function, but the error is more in the former case. The results suggest that the bees near the periphery generate more heat than those near the core, in accord with the conjecture of Heinrich (1981c, Sci. Am. 244, 147-160). On the other hand, for T-a = 5 degrees C, the heat generation function of Omholt and Lonvik (1986, J. Theor. Biol. 120, 447-456) leads to a trivial steady state where the entire swarm is at the ambient temperature. Therefore an acceptable heat generation function must result in a steady state which is both non-trivial and stable with respect to small perturbations. Omholt and Lonvik's function satisfies the first requirement, but not the second. For T-a = 15 degrees C, there is a considerable difference between predicted and measured values, probably due to the neglect of internal convection in the model.
Resumo:
The boxicity of a graph G is defined as the minimum integer k such that G is an intersection graph of axis-parallel k-dimensional boxes. Chordal bipartite graphs are bipartite graphs that do not contain an induced cycle of length greater than 4. It was conjectured by Otachi, Okamoto and Yamazaki that chordal bipartite graphs have boxicity at most 2. We disprove this conjecture by exhibiting an infinite family of chordal bipartite graphs that have unbounded boxicity.
Resumo:
There are p heterogeneous objects to be assigned to n competing agents (n > p) each with unit demand. It is required to design a Groves mechanism for this assignment problem satisfying weak budget balance, individual rationality, and minimizing the budget imbalance. This calls for designing an appropriate rebate function. When the objects are identical, this problem has been solved which we refer as WCO mechanism. We measure the performance of such mechanisms by the redistribution index. We first prove an impossibility theorem which rules out linear rebate functions with non-zero redistribution index in heterogeneous object assignment. Motivated by this theorem,we explore two approaches to get around this impossibility. In the first approach, we show that linear rebate functions with non-zero redistribution index are possible when the valuations for the objects have a certain type of relationship and we design a mechanism with linear rebate function that is worst case optimal. In the second approach, we show that rebate functions with non-zero efficiency are possible if linearity is relaxed. We extend the rebate functions of the WCO mechanism to heterogeneous objects assignment and conjecture them to be worst case optimal.
Resumo:
Abstract: A wide range of compositions of grasses in the ternary Li2O-PbO-B2O3 glass system was prepared, and de and ac conductivity measurements were carried out on these glasses. The presence of lead leads to a decrease in de conductivities and an increase in the activation energies. This is likely to be due to the increase of the partial charges on the oxygen atoms and to the presence of the lone pair on the Pb atom; both of these factors impede lithium ion motion. The ac conductivity and dielectric behavior of these glasses support such a conjecture. (C) 2000 Elsevier Science Ltd.