933 resultados para Cone-beam CT, dose to organs, IGRT, cancer patients
Resumo:
The purpose of the present study was to evaluate the thickness and the anatomic characteristics of the Schneiderian membrane and cortical bone using limited cone beam computed tomography (CBCT) scannning in patients referred for planning of apical surgery of maxillary molars.
Resumo:
Image-guided microsurgery requires accuracies an order of magnitude higher than today's navigation systems provide. A critical step toward the achievement of such low-error requirements is a highly accurate and verified patient-to-image registration. With the aim of reducing target registration error to a level that would facilitate the use of image-guided robotic microsurgery on the rigid anatomy of the head, we have developed a semiautomatic fiducial detection technique. Automatic force-controlled localization of fiducials on the patient is achieved through the implementation of a robotic-controlled tactile search within the head of a standard surgical screw. Precise detection of the corresponding fiducials in the image data is realized using an automated model-based matching algorithm on high-resolution, isometric cone beam CT images. Verification of the registration technique on phantoms demonstrated that through the elimination of user variability, clinically relevant target registration errors of approximately 0.1 mm could be achieved.
Resumo:
One limitation to the widespread implementation of Monte Carlo (MC) patient dose-calculation algorithms for radiotherapy is the lack of a general and accurate source model of the accelerator radiation source. Our aim in this work is to investigate the sensitivity of the photon-beam subsource distributions in a MC source model (with target, primary collimator, and flattening filter photon subsources and an electron subsource) for 6- and 18-MV photon beams when the energy and radial distributions of initial electrons striking a linac target change. For this purpose, phase-space data (PSD) was calculated for various mean electron energies striking the target, various normally distributed electron energy spread, and various normally distributed electron radial intensity distributions. All PSD was analyzed in terms of energy, fluence, and energy fluence distributions, which were compared between the different parameter sets. The energy spread was found to have a negligible influence on the subsource distributions. The mean energy and radial intensity significantly changed the target subsource distribution shapes and intensities. For the primary collimator and flattening filter subsources, the distribution shapes of the fluence and energy fluence changed little for different mean electron energies striking the target, however, their relative intensity compared with the target subsource change, which can be accounted for by a scaling factor. This study indicates that adjustments to MC source models can likely be limited to adjusting the target subsource in conjunction with scaling the relative intensity and energy spectrum of the primary collimator, flattening filter, and electron subsources when the energy and radial distributions of the initial electron-beam change.
Resumo:
This study compared periapical (PA) radiography and cone-beam tomography (CBT) for preoperative diagnosis in posterior maxillary teeth of consecutive patients referred for possible apical surgery. Images were concurrently analyzed by an oral radiologist and an endodontist to reach consensus in interpretation of the radiographic findings. The final material included 37 premolars and 37 molars with a total of 156 roots. CBT showed significantly more lesions (34%, p < 0.001) than PA radiography. Detecting lesions with PA radiography alone was most difficult in second molars or in roots in close proximity to the maxillary sinus floor. Additional findings were seen significantly more frequently in CBT compared with PA radiography including expansion of lesions into the maxillary sinus (p < 0.001), sinus membrane thickening (p < 0.001), and missed canals (p < 0.05). The present study highlights the advantages of using CBT for preoperative treatment planning in maxillary posterior teeth with apical pathology.
Resumo:
BACKGROUND: To report acute and late toxicity in prostate cancer patients treated by dose escalated intensity-modulated radiation therapy (IMRT) and organ tracking. METHODS: From 06/2004 to 12/2005 39 men were treated by 80 Gy IMRT along with organ tracking. Median age was 69 years, risk of recurrence was low 18%, intermediate 21% and high in 61% patients. Hormone therapy (HT) was received by 74% of patients. Toxicity was scored according to the CTC scale version 3.0. Median follow-up (FU) was 29 months. RESULTS: Acute and maximal late grade 2 gastrointestinal (GI) toxicity was 3% and 8%, late grade 2 GI toxicity dropped to 0% at the end of FU. No acute or late grade 3 GI toxicity was observed. Grade 2 and 3 pre-treatment genitourinary (GU) morbidity (PGUM) was 20% and 5%. Acute and maximal late grade 2 GU toxicity was 56% and 28% and late grade 2 GU toxicity decreased to 15% of patients at the end of FU. Acute and maximal late grade 3 GU toxicity was 8% and 3%, respectively. Decreased late > or = grade 2 GU toxicity free survival was associated with higher age (P = .025), absence of HT (P = .016) and higher PGUM (P < .001). DISCUSSION: GI toxicity rates after IMRT and organ tracking are excellent, GU toxicity rates are strongly related to PGUM.
Resumo:
AIM: To compare intraoral occlusal (OC) and periapical (PA) radiographs vs. limited cone beam computed tomography (CBCT) in diagnosing root-fractured permanent teeth. MATERIAL AND METHODS: In 38 patients (mean age 24 years, range 8-52 years) with 44 permanent teeth with horizontal root fractures, intraoral radiographs (PA and OC) and limited CBCT were used to evaluate the location (apical, middle, cervical third of the root) and angulation of the fracture line. Furthermore, the conventional radiographs and CBCT images were compared for concordance of fracture location. RESULTS: In the PA and OC radiographs, 28 fractures (63.6%) were located in the middle third of the root, 11 (25.0%) in the apical third and 5 (11.4%) in the cervical third. The PA/OC radiographs and the sagittal CBCT images (facial aspect) yielded the same level of root fracture in 70.5% of cases (31 teeth; 95% CI: 54.1-82.7%). The PA/OC radiographs and sagittal CBCT images (palatal aspect) showed the same level of root fracture in 31.8% of cases. There was a statistically significant association between the angle at which the root fracture line intersected the axis of the tooth and the level of root fracture in the facial aspect of the sagittal CBCT images. CONCLUSIONS: The diagnosis of the location and angulation of root fractures based on limited CBCT imaging differs significantly from diagnostic procedures based on intraoral radiographs (PA/OC) alone. The clinical significance for treatment strategies and for the prognosis of root-fractured teeth has to be addressed in future studies.
Resumo:
The aim of this study was to evaluate whether measurements performed on conventional frontal radiographs are comparable to measurements performed on three-dimensional (3D) models of human skulls derived from cone beam computed tomography (CBCT) scans and if the latter can be used in longitudinal studies. Cone beam computed tomography scans and conventional frontal cephalometric radiographs were made of 40 dry human skulls. From the CBCT scan a 3D model was constructed. Standard cephalometric software was used to identify landmarks and to calculate ratios and angles. The same operator identified 10 landmarks on both types of cephalometric radiographs, and on all images, five times with a time interval of 1 wk. Intra-observer reliability was acceptable for all measurements. There was a statistically significant and clinically relevant difference between measurements performed on conventional frontal radiographs and on 3D CBCT-derived models of the same skull. There was a clinically relevant difference between angular measurements performed on conventional frontal cephalometric radiographs, compared with measurements performed on 3D models constructed from CBCT scans. We therefore recommend that 3D models should not be used for longitudinal research in cases where there are only two-dimensional (2D) records from the past.
Resumo:
PURPOSE The purpose of the present study was to evaluate the thickness and anatomic characteristics of the sinus membrane using cone beam computed tomography (CBCT) in patients evaluated for implant surgery in the posterior maxilla. MATERIALS AND METHODS The study included 131 consecutive patients referred for dental implant placement in the posterior maxilla. A total of 138 CBCT images was obtained using fields of view of 4 × 4 cm, 6 × 6 cm, or 8 × 8 cm. Reformatted sagittal CBCT slices were analyzed with regard to the thickness and characteristics of the sinus membrane at single-tooth gaps in the posterior maxilla. Factors that might influence the dimensions of the sinus membrane, such as age, sex, endodontic status, and the season, were analyzed. RESULTS The mean thickness of the maxillary sinus mucosa varied between 2.1 and 2.69 mm in the three locations analyzed. Fewer than half of the evaluated sinuses exhibited a healthy mucosa (49 of 138, or 35.51%). Most of the pathologic findings were flat, shallow thickenings (63 of 138, or 45.65%). Sex did not influence the thickness of the sinus membrane at the root tips of the premolars or at single-tooth gaps, but there was a statistically significant correlation in the region of the maxillary molars. No other evaluated factors had a statistically significant effect on the dimensions of the antral mucosa. CONCLUSIONS In the present study, sex was the only factor influencing the dimension of the sinus membrane, whereas patient age, season, and the endodontic status of neighboring teeth had no significant effect on the thickness of the antral mucosa. Future studies should address which types of mucosal thickening require interdisciplinary therapy.
Resumo:
Delivering cochlear implants through a minimally invasive tunnel (1.8 mm in diameter) from the mastoid surface to the inner ear is referred to as direct cochlear access (DCA). Based on cone beam as well as micro-computed tomography imaging, this in vitro study evaluates the feasibility and efficacy of manual cochlear electrode array insertions via DCA. Free-fitting electrode arrays were inserted in 8 temporal bone specimens with previously drilled DCA tunnels. The insertion depth angle, procedural time, tunnel alignment as well as the inserted scala and intracochlear trauma were assessed. Seven of the 8 insertions were full insertions, with insertion depth angles higher than 520°. Three cases of atraumatic scala tympani insertion, 3 cases of probable basilar membrane rupture and 1 case of dislocation into the scala vestibuli were observed (1 specimen was damaged during extraction). Manual electrode array insertion following a DCA procedure seems to be feasible and safe and is a further step toward clinical application of image-guided otological microsurgery.
Resumo:
The study analyses the location of impacted maxillary canines and factors influencing root resorptions of adjacent teeth using cone-beam computed tomography (CBCT). In addition, the interrater reliability between observers of two different dental specialties for radiographic parameters will be evaluated. CBCT images of patients who were referred for radiographic localization of impacted maxillary canines and/or suspicion of root resorptions of adjacent teeth were included. The study analysed the exact three-dimensional location of the impacted canines in the anterior maxilla, frequency and extent of root resorptions, and potential influencing factors. To assess interrater agreement, Cohen's correlation parameters were calculated. This study comprises 113 patients with CBCT scans, and 134 impacted canines were analysed retrospectively. In the patients evaluated, 69 impacted canines were located palatally (51.49 per cent), 41 labially (30.60 per cent), and 24 (17.91 per cent) in the middle of the alveolar process. Root resorptions were found in 34 lateral incisors (25.37 per cent), 7 central incisors (5.22 per cent), 6 first premolars (4.48 per cent), and 1 second premolar (0.75 per cent). There was a significant correlation between root resorptions on adjacent teeth and localization of the impacted canine in relation to the bone, as well as vertical localization of the canine. Interrater agreement showed values of 0.546-0.877. CBCT provides accurate information about location of the impacted canine and prevalence and degree of root resorption of neighbouring teeth with high interrater correlation. This information is of great importance for surgeons and orthodontists for accurate diagnostics and interdisciplinary treatment planning.
Resumo:
INTRODUCTION The aims of this study were to compare lateral cephalograms with other radiologic methods for diagnosing suspected fusions of the cervical spine and to validate the assessment of congenital fusions and osteoarthritic changes against the anatomic truth. METHODS Four cadaver heads were selected with fusion of vertebrae C2 and C3 seen on a lateral cephalogram. Multidetector computed tomography (MDCT) and cone-beam computed tomography (CBCT) were performed and assessed by 5 general radiologists and 5 oral radiologists, respectively. Vertebrae C2 and C3 were examined for osseous fusions, and the left and right facet joints were diagnosed for osteoarthritis. Subsequently, the C2 and C3 were macerated and appraised by a pathologist. Descriptive analysis was performed, and interrater agreements between and within the groups were computed. RESULTS All macerated specimens showed osteoarthritic findings of varying degrees, but no congenital bony fusion. All observers agreed that no fusion was found on MDCT or CBCT. They disagreed on the prevalence of osteoarthritic deformities (general radiologists/MDCT, 100%; oral radiologists/CBCT, 93.3%) and joint space assessment in the facet joints (kappa = 0.452). The agreement within the rater groups differed considerably (general radiologists/MDCT, kappa = 0.612; oral radiologists/CBCT, kappa = 0.240). CONCLUSIONS Lateral cephalograms do not provide dependable data to assess the cervical spine for fusions and cause false-positive detections. Both MDCT interpreted by general radiologists and CBCT interpreted by oral radiologists are reliable methods to exclude potential fusions. Degenerative osteoarthritic changes are diagnosed more accurately and consistently by general radiologists evaluating MDCT.
Resumo:
INTRODUCTION The mental foramen (MF) is an important landmark in dentistry. Knowledge of its position is central to perform block anesthesia of the mental nerve or to avoid nerve damage during surgical procedures in the premolar area of the mandible. The present radiographic study aimed at evaluating the location and dimension of the MF and measuring distances to neighboring structures by using limited cone-beam computed tomography (CBCT). METHODS Sagittal, axial, and coronal CBCT images of 142 patients (26 bilateral and 116 unilateral cases) were retrospectively screened to determine the location of the MF with respect to adjacent teeth and to take linear measurements of the size of the MF and its distances to the upper and lower borders of the mandible. In addition, the course and angulation of the mental canal exiting the MF were assessed. RESULTS The majority of MF (56%) were located apically between the 2 premolars, and another 35.7% of MF were positioned below the second premolar. On average, the MF was localized 5.0 mm from the closest root of the adjacent tooth (range, 0.3-9.8 mm). The mean size of the MF showed a height of 3.0 mm and a length of 3.2 mm; however, individual cases showed large differences in height (1.8-5.1 mm) and in length (1.8-5.5 mm). All mental canals exiting the MF demonstrated an upward course in the coronal plane, with 70.1% of the mental canal presenting an anterior loop (AL) in the axial view. The mean extension of AL in cases with an AL was 2.3 mm. CONCLUSIONS This study is consistent with previous radiographic studies regarding size and location of MF and distances between MF and adjacent anatomic structures. The assessed bilateral cases showed a high intraindividual concordance for certain features when comparing right and left sides.
Resumo:
PURPOSE The anterior maxilla, sometimes also called premaxilla, is an area frequently requiring surgical interventions. The objective of this observational study was to identify and assess accessory bone channels other than the nasopalatine canal in the anterior maxilla using limited cone beam computed tomography (CBCT). METHODS A total of 176 cases fulfilled the inclusion criteria comprising region of interest, quality of CBCT image, and absence of pathologic lesions or retained teeth. Any bone canal with a minimum diameter of 1.00 mm other than the nasopalatine canal was analyzed regarding size, location, and course, as well as patient gender and age. RESULTS A total of 67 accessory canals ≥1.00 mm were found in 49 patients (27.8%). A higher frequency of accessory canals was observed in males (33.0%) than in females (22.7%) (p = 0.130). Accessory canals occurred more frequently in older rather than younger patients (p = 0.115). The mean diameter of accessory canals was 1.31 ± 0.26 mm (range 1.01-2.13 mm). Gender and age did not significantly influence the diameter. Accessory canals were found palatal to all anterior teeth, but most frequently palatal to the central incisors. In 56.7%, the accessory canals curved superolaterally and communicated with the ipsilateral alveolar extension of the canalis sinuosus. CONCLUSIONS The study confirms the presence of bone channels within the anterior maxilla other than the nasopalatine canal. More than half of these accessory bone canals communicated with the canalis sinuosus. From a clinical perspective, studies are needed to determine the content of these accessory canals.
Resumo:
AIM To compare the computed tomography (CT) dose and image quality with the filtered back projection against the iterative reconstruction and CT with a minimal electronic noise detector. METHODS A lung phantom (Chest Phantom N1 by Kyoto Kagaku) was scanned with 3 different CT scanners: the Somatom Sensation, the Definition Flash and the Definition Edge (all from Siemens, Erlangen, Germany). The scan parameters were identical to the Siemens presetting for THORAX ROUTINE (scan length 35 cm and FOV 33 cm). Nine different exposition levels were examined (reference mAs/peek voltage): 100/120, 100/100, 100/80, 50/120, 50/100, 50/80, 25/120, 25/100 and 25 mAs/80 kVp. Images from the SOMATOM Sensation were reconstructed using classic filtered back projection. Iterative reconstruction (SAFIRE, level 3) was performed for the two other scanners. A Stellar detector was used with the Somatom Definition Edge. The CT doses were represented by the dose length products (DLPs) (mGycm) provided by the scanners. Signal, contrast, noise and subjective image quality were recorded by two different radiologists with 10 and 3 years of experience in chest CT radiology. To determine the average dose reduction between two scanners, the integral of the dose difference was calculated from the lowest to the highest noise level. RESULTS When using iterative reconstruction (IR) instead of filtered back projection (FBP), the average dose reduction was 30%, 52% and 80% for bone, soft tissue and air, respectively, for the same image quality (P < 0.0001). The recently introduced Stellar detector (Sd) lowered the radiation dose by an additional 27%, 54% and 70% for bone, soft tissue and air, respectively (P < 0.0001). The benefit of dose reduction was larger at lower dose levels. With the same radiation dose, an average of 34% (22%-37%) and 25% (13%-46%) more contrast to noise was achieved by changing from FBP to IR and from IR to Sd, respectively. For the same contrast to noise level, an average of 59% (46%-71%) and 51% (38%-68%) dose reduction was produced for IR and Sd, respectively. For the same subjective image quality, the dose could be reduced by 25% (2%-42%) and 44% (33%-54%) using IR and Sd, respectively. CONCLUSION This study showed an average dose reduction between 27% and 70% for the new Stellar detector, which is equivalent to using IR instead of FBP.
Resumo:
INTRODUCTION The aim of this study was to determine the reproducibility and accuracy of linear measurements on 2 types of dental models derived from cone-beam computed tomography (CBCT) scans: CBCT images, and Anatomodels (InVivoDental, San Jose, Calif); these were compared with digital models generated from dental impressions (Digimodels; Orthoproof, Nieuwegein, The Netherlands). The Digimodels were used as the reference standard. METHODS The 3 types of digital models were made from 10 subjects. Four examiners repeated 37 linear tooth and arch measurements 10 times. Paired t tests and the intraclass correlation coefficient were performed to determine the reproducibility and accuracy of the measurements. RESULTS The CBCT images showed significantly smaller intraclass correlation coefficient values and larger duplicate measurement errors compared with the corresponding values for Digimodels and Anatomodels. The average difference between measurements on CBCT images and Digimodels ranged from -0.4 to 1.65 mm, with limits of agreement values up to 1.3 mm for crown-width measurements. The average difference between Anatomodels and Digimodels ranged from -0.42 to 0.84 mm with limits of agreement values up to 1.65 mm. CONCLUSIONS Statistically significant differences between measurements on Digimodels and Anatomodels, and between Digimodels and CBCT images, were found. Although the mean differences might be clinically acceptable, the random errors were relatively large compared with corresponding measurements reported in the literature for both Anatomodels and CBCT images, and might be clinically important. Therefore, with the CBCT settings used in this study, measurements made directly on CBCT images and Anatomodels are not as accurate as measurements on Digimodels.