940 resultados para Concrete footings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an experimental investigation on the lateral impact response of axially loaded concrete filled double skin tube (CFDST) columns. A total of four test series are being conducted at Queensland University of Technology using a novel horizontal impact-testing rig. The test results reported in this paper are from the first test series, where the columns are pinned at both ends and impacted at mid-span. In the next three series, effects of support conditions, impact location and repeated impact will be treated. The main objectives of the current paper are to describe the innovative testing procedure and provide some insight into the lateral impact behavior and failure of simply supported axially pre-loaded CFDST columns. The results include time histories of impact forces, reaction forces, axial force and global lateral deflection. Based on the test data, the failure mode, peak impact force, peak reaction forces, maximum deflection and residual deflection, with and without axial load, are analyzed and discussed. The findings of this study will serve as a benchmark reference for future analysis and design of CFDST columns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concrete-filled double skin tube (CFDST) is a creative innovation of steel-concrete-steel composite construction, formed by two concentric steel tubes separated by a concrete filler. Over the recent years, this column form has been widely used as a new sustainable alternative to existing structural bridge piers and building columns. Since they could be vulnerable to impact from passing vessels or vehicles, it is necessary to understand their behaviour under lateral impact loads. With this in mind, physical tests on full scale columns were performed using an innovative horizontal impact testing system to obtain the failure modes, the time history of the impact force, reaction forces and global lateral deflection as well as permanent local buckling profile of the columns. The experimental testing was complemented and supplemented by developing and using an advanced finite element analysis model. The model was validated by comparing the numerical results against experimental data. The findings of this study will serve as a benchmark reference for future analysis and design of CFDST columns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic emission (AE) energy, instead of amplitude, associated with each of the event is used to estimate the fracture process zone (FPZ) size. A steep increase in the cumulative AE energy of the events with respect to time is correlated with the formation of FPZ. Based on the AE energy released during these events and the locations of the events, FPZ size is obtained. The size-independent fracture energy is computed using the expressions given in the boundary effect model by least squares method since over-determined system of equations are obtained when data from several specimens are used. Instead of least squares method a different method is suggested in which the transition ligament length, measured from the plot of histograms of AE events plotted over the un-cracked ligament, is used directly to obtain size-independent fracture energy. The fracture energy thus calculated seems to be size-independent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fatigue crack propagation model for concrete is proposed based on the concepts of fracture mechanics. This model takes into account the loading history, frequency of applied load, and size, effect parameters. Using this model, a method is described based on linear elastic fracture mechanics to assess the residual strength of cracked plain and reinforced concrete (RC) beams. This could be used to predict the residual strength (load carrying capacity) of cracked or damaged plain and reinforced concrete beams at a given level of damage. It has been seen that the fatigue crack propagation rate increases as. the size of plain concrete, beam increases indicating an increase in brittleness. In reinforced concrete (RC) beams, the fracture process becomes stable only when the beam is sufficiently reinforced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple model is developed to represent the strength and deformational characteristics of concrete when subjected to a rate of strain or rate of stress or creep or relaxation testing under uniaxial compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bending moment coefficients for the design of rectangular reinforced concrete panels supported on four sides with a short discontinuous edge are derived using the strip theory. The moment fields resulting from the use of proposed coefficients are examined in terms of the moment volume for possible savings in reinforcement and compared with other codified procedures. The strip coefficients averaged over the corresponding sides of the panel, besides resulting in considerable savings in reinforcement, are found to be identical with the coefficients predicted by simple yield line theory using an orthotropic layout of reinforcement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of microcracks formed in concrete under repeated uniaxial compressive loads are investigated by experiments on prismatic specimens. The distribution and orientation of cracks formed are studied by optical microscopic techniques. The basic failure mechanism of concrete at the phenomenological and internal structural level are examined by the formation and propagation of cracks. The tests have indicated that local tensile failures constitute the dominant mode of fracture, with the bond cracks forming the major percentage of the total magnitude of cracks. Significant differences were observed in the proportion of bond cracks formed under static and repeated load systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, nonhomogeneous Markov chains are proposed for modeling the cracking behavior of reinforced concrete beams subjected to monotonically increasing loads. The model facilitates prediction of the maximum crackwidth at a given load given the crackwidth at a lower load level, and thus leads to a better understanding of the cracking phenomenon. To illustrate the methodology developed, the results of three reinforced concrete beams tested in the laboratory are analyzed and presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to obtain the fracture characteristics of low and medium compressive strength self consolidating concrete (SCC) for notched and un-notched plain concrete beams by using work of fracture G(F) and size effect model G(f) methods and comparing them with those of normal concrete and high performance concrete. The results show that; (i) with an increase in compressive strength, G(F) increases and G(f) decreases; (ii) with an increase in depth of beam, the decrease in nominal stress of notched beam is more when compared with that of a notchless beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultimate bearing capacity of a number of multiple strip footings, identically spaced and equally loaded to failure at the same time,is computed by using the lower bound limit analysis in combination with finite elements. The efficiency factor due to the component of soil unit weight, is computed with respect to changes in the clear spacing (xi(gamma)) between the footings. It is noted that the failure load for a footing in the group becomes always greater than that of a single isolated footing. The values of xi(gamma) for the smooth footings are found to be always lower than the rough footings. The values ofxi(gamma) are found to increase continuously with a decrease in the spacing between footings. As compared to the available theoretical and experimental results reported in literature, the present analysis provides generally a little lower values of xi(gamma). (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Probabilistic analysis of cracking moment from 22 simply supported reinforced concrete beams is performed. When the basic variables follow the distribution considered in this study, the cracking moment of a beam is found to follow a normal distribution. An expression is derived, for characteristic cracking moment, which will be useful in examining reinforced concrete beams for a limit state of cracking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new elasto-plastic cracking constitutive model for reinforced concrete is presented. The nonlinear effects considered cover almost all the nonlinearities exhibited by reinforced concrete under short term monotonic loading. They include concrete cracking in tension, plasticity in compression, aggregate interlock, tension softening, elasto-plastic behavior of steel, bond-slip between concrete, and steel reinforcement and tension stiffening. A new procedure for incorporating bondslip in smeared steel elements is described. A modified Huber-Hencky-Mises failure criterion for plastic deformation of concrete, which fits the experimental results under biaxial stresses better, is proposed. Multiple cracking at Gauss points and their opening and closing are considered. Matrix expressions are developed and are incorporated in a nonlinear finite element program. After the objectivity of the model is demonstrated, the model is used to analyze two different types of problems: one, a set of four shear panels, and the other, a reinforced concrete beam without shear reinforcement. The results of the analysis agree favorably with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fracture properties of different concrete-concrete interfaces are determined using the Bazant's size effect model. The size effect on fracture properties are analyzed using the boundary effect model proposed by Wittmann and his co-workers. The interface properties at micro-level are analyzed through depth sensing micro-indentation and scanning electron microscopy. Geometrically similar beam specimens of different sizes having a transverse interface between two different strengths of concrete are tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control. The fracture properties such as, fracture energy (G(f)), length of process zone (c(f)), brittleness number (beta), critical mode I stress intensity factor (K-ic), critical crack tip opening displacement CTODc (delta(c)), transitional ligament length to free boundary (a(j)), crack growth resistance curve and micro-hardness are determined. It is seen that the above fracture properties decrease as the difference between the compressive strength of concrete on either side of the interface increases. (C) 2010 Elsevier Ltd. All rights reserved.