980 resultados para College stories, American.
Measurement of the top quark mass in the lepton plus jets final state with the matrix element method
Resumo:
We present a measurement of the top quark mass with the matrix element method in the lepton+jets final state. As the energy scale for calorimeter jets represents the dominant source of systematic uncertainty, the matrix element likelihood is extended by an additional parameter, which is defined as a global multiplicative factor applied to the standard energy scale. The top quark mass is obtained from a fit that yields the combined statistical and systematic jet energy scale uncertainty. Using a data set of 0.4 fb(-1) taken with the D0 experiment at Run II of the Fermilab Tevatron Collider, the mass of the top quark is measured using topological information to be: m(top)(center dot+jets)(topo)=169.2(-7.4)(+5.0)(stat+JES)(-1.4)(+1.5)(syst) GeV, and when information about identified b jets is included: m(top)(center dot+jets)(b-tag)=170.3(-4.5)(+4.1)(stat+ JES)(-1.8)(+1.2)(syst) GeV. The measurements yield a jet energy scale consistent with the reference scale.
Resumo:
Models where the dark matter component of the Universe interacts with the dark energy field have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. In these models the mass of the cold dark matter particles is a function of the dark energy field responsible for the present acceleration of the Universe, and different scenarios can be parametrized by how the mass of the cold dark matter particles evolves with time. In this article we study the impact of a constant coupling delta between dark energy and dark matter on the determination of a redshift dependent dark energy equation of state w(DE)(z) and on the dark matter density today from SNIa data. We derive an analytical expression for the luminosity distance in this case. In particular, we show that the presence of such a coupling increases the tension between the cosmic microwave background data from the analysis of the shift parameter in models with constant w(DE) and SNIa data for realistic values of the present dark matter density fraction. Thus, an independent measurement of the present dark matter density can place constraints on models with interacting dark energy.
Resumo:
We investigate an alternative compactification of extra dimensions using local cosmic string in the Brans-Dicke gravity framework. In the context of dynamical systems it is possible to show that there exist a stable field configuration for the Einstein-Brans-Dicke equations. We explore the analogies between this particular model and the Randall-Sundrum scenario.
Resumo:
A measurement of the top quark mass using events with one charged lepton, missing transverse energy, and jets in the final state, collected by the D0 detector from p (p) over bar collisions at root s=1.96 TeV at the Fermilab Tevatron collider, is presented. A constrained fit is used to fully reconstruct the kinematics of the events. For every event a top quark mass likelihood is calculated taking into account all possible jet assignments and the probability that an event is signal or background. Lifetime-based identification of b jets is employed to enhance the separation between t (t) over bar signal and background from other physics processes and to improve the assignment of the observed jets to the quarks in the t (1) over bar hypothesis. We extract a multiplicative jet energy scale (JES) factor in situ, greatly reducing the systematic effect related to the jet energy measurement. In a data sample with an integrated luminosity of 425 pb(-1), we observe 230 candidate events, with an estimated background of 123 events, and measure m(t)=173.7 +/- 4.4(stat+JES)(-2.0)(+2.1)(syst) GeV. This result represents the first application of the ideogram technique to the measurement of the top quark mass in lepton+jets events.
Resumo:
We present a search for electroweak production of single top quarks in the s-channel (p (p) over bar -> t (b) over bar +X) and t-channel (p (p) over bar -> tq (b) over bar +X) modes. We have analyzed 230 pb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider at a center-of-mass energy of root s=1.96 TeV. No evidence for a single top quark signal is found. We set 95% confidence level upper limits on the production cross sections, based on binned likelihoods formed from a neural network output. The observed (expected) limits are 6.4 pb (4.5 pb) in the s-channel and 5.0 pb (5.8 pb) in the t-channel.
Resumo:
In this paper, we explicitly construct an infinite number of Hopfions (static, soliton solutions with nonzero Hopf topological charges) within the recently proposed (3 + 1)-dimensional, integrable, and relativistically invariant field theory. Two integers label the family of Hopfions we have found. Their product is equal to the Hopf charge which provides a lower bound to the soliton's finite energy. The Hopfions are explicitly constructed in terms of the toroidal coordinates and shown to have a form of linked closed vortices.
Resumo:
We build a complete supersymmetric version of a 3-3-1 gauge model using the superfield formalism. We point out that a discrete symmetry, similar to R symmetry in the minimal supersymmetric standard model, is possible to be defined in this model. Hence we have both R-conservina and R-violating possibilities. Analysis of the mass spectrum of the neutral real scalar fields show that in this model the lightest scalar Higgs boson has a mass upper limit, and at the tree level it is 124.5 GeV for a given illustrative set of parameters.
Resumo:
We compare phenomenological values of the frozen QCD running coupling constant (alpha(s)) with two classes of infrared finite solutions obtained through nonperturbative Schwinger-Dyson equations. We use these same solutions with frozen coupling constants as well as their respective nonperturbative gluon propagators to compute the QCD prediction for the asymptotic pion form factor. Agreement between theory and experiment on alpha(s)(0) and F (pi)(Q(2)) is found only for one of the Schwinger-Dyson equation solutions.
Resumo:
If we replace the general spacetime group of diffeomorphisms by transformations taking place in the tangent space, general relativity can be interpreted as a gauge theory, and in particular as a gauge theory for the Lorentz group. In this context, it is shown that the angular momentum and the energy-momentum tensors of a general matter field can be obtained from the invariance of the corresponding action integral under transformations taking place, not in spacetime, but in the tangent space, in which case they can be considered as gauge currents.
Resumo:
We consider the mass generation for both charginos and neutralinos in a 3-3-1 supersymmetric model. We show that R-parity breaking interactions leave the electron and one of the neutrinos massless at the tree level. However, the same interactions induce masses for these particles at the 1-loop level. Unlike the similar situation in the minimal supersymmetric standard model, the masses of the neutralinos are related to the masses of the charginos.
Resumo:
The effect of lepton transverse polarization in B-0-->D(-)l(+)nu(l), B+-->(D) over bar (0)l(+)nu(l) decays (l=tau,mu) is analyzed within the framework of the standard model in the leading order of heavy quark effective theory. It is shown that a nonzero transverse polarization appears due to the electromagnetic final state interaction. The diagrams with intermediate D,D* mesons contributing to the nonvanishing P-T are considered. Regarding only the contribution of these mesons, the values of the tau-lepton transverse polarization averaged over the physical region in the B-0-->D(-)tau(+)nu(l) and B+-->(D) over bar (0)tau(+)nu(l) decays are equal to 2.60x10(-3) and -1.59x10(-3), respectively. In the case of muon decay modes the values of [P-T] are equal to 2.97x10(-4) and -6.79x10(-4).
Resumo:
The DELPHI Collaboration has recently reported the measurement of J/psi production in photon-photon collisions at CERN LEP II. These newly available data provide additional proof of the importance of colored c (c) over bar pairs for the production of charmonium, because these data can be explained only by considering resolved photon processes. We show here that the inclusion of color octet contributions to J/psi production in the framework of the color evaporation model is able to reproduce these data. In particular, the transverse-momentum distribution of the J/psi mesons is well described by this model.
Resumo:
We demonstrate that a CERN LHC Higgs boson search in weak boson fusion production with subsequent decay to weak boson pairs is robust against extensions of the standard model or minimal supersymmetric standard model involving a large number of Higgs doublets. We also show that the transverse mass distribution provides unambiguous discrimination of a continuum Higgs signal from the standard model.
Resumo:
We discuss the matching of the BPS part of the spectrum for a (super) membrane, which gives the possibility of getting the membrane's results via string calculations. In the small coupling limit of M theory the entropy of the system coincides with the standard entropy of type IIB string theory (including the logarithmic correction term). The thermodynamic behavior at a large coupling constant is computed by considering M theory on a manifold with a topology T-2 x R-9. We argue that the finite temperature partition functions (brane Laurent series for p not equal 1) associated with the BPS p-brane spectrum can be analytically continued to well-defined functionals. It means that a finite temperature can be introduced in brane theory, which behaves like finite temperature field theory. In the limit p --> 0 (point particle limit) it gives rise to the standard behavior of thermodynamic quantities.
Resumo:
Using variational and numerical solutions of the mean-field Gross-Pitaevskii equation we show that a bright soliton can be stabilized in a trapless three-dimensional attractive Bose-Einstein condensate (BEC) by a rapid periodic temporal modulation of scattering length alone by using a Feshbach resonance. This scheme also stabilizes a rotating vortex soliton in two dimensions. Apart from possible experimental application in BEC, the present study suggests that the spatiotemporal solitons of nonlinear optics in three dimensions can also be stabilized in a layered Kerr medium with sign-changing nonlinearity along the propagation direction.