866 resultados para Cognitive Linguistics. Situation Models. Mental Simulation. Frames and Schemes
Resumo:
Logistic models are studied as a tool to convert dynamical forecast information (deterministic and ensemble) into probability forecasts. A logistic model is obtained by setting the logarithmic odds ratio equal to a linear combination of the inputs. As with any statistical model, logistic models will suffer from overfitting if the number of inputs is comparable to the number of forecast instances. Computational approaches to avoid overfitting by regularization are discussed, and efficient techniques for model assessment and selection are presented. A logit version of the lasso (originally a linear regression technique), is discussed. In lasso models, less important inputs are identified and the corresponding coefficient is set to zero, providing an efficient and automatic model reduction procedure. For the same reason, lasso models are particularly appealing for diagnostic purposes.
Resumo:
Longitudinal flow bursts observed by the European Incoherent Scatter (EISCAT) radar, in association with dayside auroral transients observed from Svalbard, have been interpreted as resulting from pulses of enhanced reconnection at the dayside magnetopause. However, an alternative model has recently been proposed for a steady rate of magnetopause reconnection, in which the bursts of longitudinal flow are due to increases in the field line curvature force, associated with the By component of the magnetosheath field. We here evaluate these two models, using observations on January 20, 1990, by EISCAT and a 630-nm all-sky camera at Ny Ålesund. For both models, we predict the behavior of both the dayside flows and the 630-nm emissions on newly opened field lines. It is shown that the signatures of steady reconnection and magnetosheath By changes could possibly resemble the observed 630-nm auroral events, but only for certain locations of the observing site, relative to the ionospheric projection of the reconnection X line: however, in such cases, the flow bursts would be seen between the 630-nm transients and not within them. On the other hand, the model of reconnection rate pulses predicts that the flows will be enhanced within each 630-nm transient auroral event. The observations on January 20, 1990, are shown to be consistent with the model of enhanced reconnection rate pulses over a background level and inconsistent with the effects of periodic enhancements of the magnitude of the magnetosheath By component. We estimate that the reconnection rate within the pulses would have to be at least an order of magnitude larger than the background level between the pulses.
Resumo:
Using Azoulay's frame of the civil gaze, this chapter examines selected Second World War images, catalogued under 'interpreter' in the IWM's photographic archive, looking at representative situations in which interpreters typically operate in wartime - communicating with clandestine forces, liaising between the army and civilians, and dealing with the aftermath of war.
Resumo:
Objective. To compare mental health, coping and family-functioning in parents of young people with obsessive-compulsive disorder (OCD), anxiety disorders, and no known mental health problems. Method. Parents of young people with OCD (N=28), other anxiety disorders (N=28), and no known mental health problems (N=62) completed the Brief Symptom Inventory (Derogatis, 1993), the Coping Responses Inventory (Moos, 1990), and the McMaster family assessment device (Epstein, Baldwin, & Bishop, 1983). Results. Parents of children with OCD and anxiety disorders had poorer mental health and used more avoidant coping than parents of non-clinical children. There were no group differences in family-functioning. Conclusion. The similarities across the parents of clinically referred children suggest that there is a case for encouraging active parental involvement in the treatment of OCD in young people.
Resumo:
This study examines the effects of a multi-session Cognitive Bias Modification (CBM) program on interpretative biases and social anxiety in an Iranian sample. Thirty-six volunteers with a high score on social anxiety measures were recruited from a student population and randomly allocated into the experimental and control groups. In the experimental group, participants received 4 sessions of positive CBM for interpretative biases (CBM-I) over 2 weeks in the laboratory. Participants in the control condition completed a neutral task matched the active CBM-I intervention in format and duration but did not encourage positive disambiguation of socially ambiguous scenarios. The results indicated that after training the positive CBM-I group exhibited more positive (and less negative) interpretations of ambiguous scenarios and less social anxiety symptoms relative to the control condition at both 1 week post-test and 7 weeks follow-up. It is suggested that clinical trials are required to establish the clinical efficacy of this intervention for social anxiety.
Resumo:
Aims: Over the past decade in particular, formal linguistic work within L3 acquisition has concentrated on hypothesizing and empirically determining the source of transfer from previous languages—L1, L2 or both—in L3 grammatical representations. In view of the progressive concern with more advanced stages, we aim to show that focusing on L3 initial stages should be one continued priority of the field, even—or especially—if the field is ready to shift towards modeling L3 development and ultimate attainment. Approach: We argue that L3 learnability is significantly impacted by initial stages transfer, as such forms the basis of the initial L3 interlanguage. To illustrate our point, the insights from studies using initial and intermediary stages L3 data are discussed in light of developmental predictions that derive from the initial stages models. Conclusions: Despite a shared desire to understand the process of L3 acquisition in whole, inclusive of offering developmental L3 theories, we argue that the field does not yet have—although is ever closer to—the data basis needed to effectively do so. Originality: This article seeks to convince the readership for the need of conservatism in L3 acquisition theory building, whereby offering a framework on how and why we can most effectively build on the accumulated knowledge of the L3 initial stages in order to make significant, steady progress. Significance: The arguments exposed here are meant to provide an epistemological base for a tenable framework of formal approaches to L3 interlanguage development and, eventually, ultimate attainment.
Resumo:
Phylogenetic analyses of chloroplast DNA sequences, morphology, and combined data have provided consistent support for many of the major branches within the angiosperm, clade Dipsacales. Here we use sequences from three mitochondrial loci to test the existing broad scale phylogeny and in an attempt to resolve several relationships that have remained uncertain. Parsimony, maximum likelihood, and Bayesian analyses of a combined mitochondrial data set recover trees broadly consistent with previous studies, although resolution and support are lower than in the largest chloroplast analyses. Combining chloroplast and mitochondrial data results in a generally well-resolved and very strongly supported topology but the previously recognized problem areas remain. To investigate why these relationships have been difficult to resolve we conducted a series of experiments using different data partitions and heterogeneous substitution models. Usually more complex modeling schemes are favored regardless of the partitions recognized but model choice had little effect on topology or support values. In contrast there are consistent but weakly supported differences in the topologies recovered from coding and non-coding matrices. These conflicts directly correspond to relationships that were poorly resolved in analyses of the full combined chloroplast-mitochondrial data set. We suggest incongruent signal has contributed to our inability to confidently resolve these problem areas. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Institutions continue to face increasing pressure from faculty, students, and other concerned constituents to divest endowment holdings from perceived social injustices. In this report, investment officers and advisory committee members offer insight into institutional practices used to respond to these concerns through the adoption of socially responsible investment policies and other socially responsible investment options. Contacts offer recommendations on balancing the administration’s fiduciary responsibility to ensure maximum endowment returns with the social concerns of institutional constituents.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian inflation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in different measures of forecasting accuracy are substantial, especially for short horizons.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian in ation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in di¤erent measures of forecasting accuracy are substantial, especially for short horizons.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting.