829 resultados para Closed loop systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the use of multidimensional scaling in the evaluation of fractional system. Several algorithms are analysed based on the time response of the closed loop system under the action of a reference step input signal. Two alternative performance indices, based on the time and frequency domains, are tested. The numerical experiments demonstrate the feasibility of the proposed visualization method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a novel method for visualizing the control systems behavior. The proposed scheme uses the tools of fractional calculus and computes the signals propagating within the system structure as a time/frequency-space wave. Linear and nonlinear closed-loop control systems are analyzed, for both the time and frequency responses, under the action of a reference step input signal. Several nonlinearities, namely, Coulomb friction and backlash, are also tested. The numerical experiments demonstrate the feasibility of the proposed methodology as a visualization tool and motivate its extension for other systems and classes of nonlinearities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper stability of one-step ahead predictive controllers based on non-linear models is established. It is shown that, under conditions which can be fulfilled by most industrial plants, the closed-loop system is robustly stable in the presence of plant uncertainties and input–output constraints. There is no requirement that the plant should be open-loop stable and the analysis is valid for general forms of non-linear system representation including the case out when the problem is constraint-free. The effectiveness of controllers designed according to the algorithm analyzed in this paper is demonstrated on a recognized benchmark problem and on a simulation of a continuous-stirred tank reactor (CSTR). In both examples a radial basis function neural network is employed as the non-linear system model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a review of the design and development of the Yorick series of active stereo camera platforms and their integration into real-time closed loop active vision systems, whose applications span surveillance, navigation of autonomously guided vehicles (AGVs), and inspection tasks for teleoperation, including immersive visual telepresence. The mechatronic approach adopted for the design of the first system, including head/eye platform, local controller, vision engine, gaze controller and system integration, proved to be very successful. The design team comprised researchers with experience in parallel computing, robot control, mechanical design and machine vision. The success of the project has generated sufficient interest to sanction a number of revisions of the original head design, including the design of a lightweight compact head for use on a robot arm, and the further development of a robot head to look specifically at increasing visual resolution for visual telepresence. The controller and vision processing engines have also been upgraded, to include the control of robot heads on mobile platforms and control of vergence through tracking of an operator's eye movement. This paper details the hardware development of the different active vision/telepresence systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we show how a set of recently derived theoretical results for recurrent neural networks can be applied to the production of an internal model control system for a nonlinear plant. The results include determination of the relative order of a recurrent neural network and invertibility of such a network. A closed loop controller is produced without the need to retrain the neural network plant model. Stability of the closed-loop controller is also demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnitude and direction of the coupled feedbacks between the biotic and abiotic components of the terrestrial carbon cycle is a major source of uncertainty in coupled climate–carbon-cycle models1, 2, 3. Materially closed, energetically open biological systems continuously and simultaneously allow the two-way feedback loop between the biotic and abiotic components to take place4, 5, 6, 7, but so far have not been used to their full potential in ecological research, owing to the challenge of achieving sustainable model systems6, 7. We show that using materially closed soil–vegetation–atmosphere systems with pro rata carbon amounts for the main terrestrial carbon pools enables the establishment of conditions that balance plant carbon assimilation, and autotrophic and heterotrophic respiration fluxes over periods suitable to investigate short-term biotic carbon feedbacks. Using this approach, we tested an alternative way of assessing the impact of increased CO2 and temperature on biotic carbon feedbacks. The results show that without nutrient and water limitations, the short-term biotic responses could potentially buffer a temperature increase of 2.3 °C without significant positive feedbacks to atmospheric CO2. We argue that such closed-system research represents an important test-bed platform for model validation and parameterization of plant and soil biotic responses to environmental changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conditions are given under which a descriptor, or generalized state-space system can be regularized by output feedback. It is shown that under these conditions, proportional and derivative output feedback controls can be constructed such that the closed-loop system is regular and has index at most one. This property ensures the solvability of the resulting system of dynamic-algebraic equations. A reduced form is given that allows the system properties as well as the feedback to be determined. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For linear multivariable time-invariant continuous or discrete-time singular systems it is customary to use a proportional feedback control in order to achieve a desired closed loop behaviour. Derivative feedback is rarely considered. This paper examines how derivative feedback in descriptor systems can be used to alter the structure of the system pencil under various controllability conditions. It is shown that derivative and proportional feedback controls can be constructed such that the closed loop system has a given form and is also regular and has index at most 1. This property ensures the solvability of the resulting system of dynamic-algebraic equations. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way. The problem of pole placement with derivative feedback alone and in combination with proportional state feedback is also investigated. A computational algorithm for improving the “conditioning” of the regularized closed loop system is derived.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the regularization problem for linear, constant coefficient descriptor systems Ex' = Ax+Bu, y1 = Cx, y2 = Γx' by proportional and derivative mixed output feedback. Necessary and sufficient conditions are given, which guarantee that there exist output feedbacks such that the closed-loop system is regular, has index at most one and E+BGΓ has a desired rank, i.e., there is a desired number of differential and algebraic equations. To resolve the freedom in the choice of the feedback matrices we then discuss how to obtain the desired regularizing feedback of minimum norm and show that this approach leads to useful results in the sense of robustness only if the rank of E is decreased. Numerical procedures are derived to construct the desired feedback gains. These numerical procedures are based on orthogonal matrix transformations which can be implemented in a numerically stable way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordinate free conditions are given for pole assignment by feedback in linear descriptor (singular) systems which guarantee closed-loop regularity. These conditions are shown to be both necessary and sufficient for assignment of the maximum possible number of finite poles. Transformation to special coordinates are not used and the results provide a robust algorithm for the computation of the required feedback.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solution of the pole assignment problem by feedback in singular systems is parameterized and conditions are given which guarantee the regularity and maximal degree of the closed loop pencil. A robustness measure is defined, and numerical procedures are described for selecting the free parameters in the feedback to give optimal robustness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we use the Hermite-Biehler theorem to establish results for the design of fixed order controllers for a class of time delay systems. We extend results of the polynomial case to quasipolynomials using the property of interlacing in high frequencies of the class of time delay systems considered. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka-Volterra models are provided to show the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems has been formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rossler system and synchronization of the hyperchaotic Rossler system. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)