949 resultados para Chaotic attractor
Resumo:
Synchronization and chaos play important roles in neural activities and have been applied in oscillatory correlation modeling for scene and data analysis. Although it is an extensively studied topic, there are still few results regarding synchrony in locally coupled systems. In this paper we give a rigorous proof to show that large numbers of coupled chaotic oscillators with parameter mismatch in a 2D lattice can be synchronized by providing a sufficiently large coupling strength. We demonstrate how the obtained result can be applied to construct an oscillatory network for scene segmentation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
For tokamak models using simplified geometries and reversed shear plasma profiles, we have numerically investigated how the onset of Lagrangian chaos at the plasma edge may affect the plasma confinement in two distinct but closely related problems. Firstly, we have considered the motion of particles in drift waves in the presence of an equilibrium radial electric field with shear. We have shown that the radial particle transport caused by this motion is selective in phase space, being determined by the resonant drift waves and depending on the parameters of both the resonant waves and the electric field profile. Moreover, we have shown that an additional transport barrier may be created at the plasma edge by increasing the electric field. In the second place, we have studied escape patterns and magnetic footprints of chaotic magnetic field lines in the region near a tokamak wall, when there are resonant modes due to the action of an ergodic magnetic limiter. A non-monotonic safety factor profile has been used in the analysis of field line topology in a region of negative magnetic shear. We have observed that, if internal modes are perturbed, the distributions of field line connection lengths and magnetic footprints exhibit spatially localized escape channels. For typical physical parameters of a fusion plasma, the two Lagrangian chaotic processes considered in this work can be effective in usual conditions so as to influence plasma confinement. The reversed shear effects discussed in this work may also contribute to evaluate the transport barrier relevance in advanced confinement scenarios in future tokamak experiments.
Resumo:
In a 2D parameter space, by using nine experimental time series of a Clitia`s circuit, we characterized three codimension-1 chaotic fibers parallel to a period-3 window. To show the local preservation of the properties of the chaotic attractors in each fiber, we applied the closed return technique and two distinct topological methods. With the first topological method we calculated the linking, numbers in the sets of unstable periodic orbits, and with the second one we obtained the symbolic planes and the topological entropies by applying symbolic dynamic analysis. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this Letter we deal with a nonlinear Schrodinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Here we show that the chaotic perturbation is more effective in destroying the soliton behavior, when compared with random or nonperiodic perturbation. For a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein condensates and their collective excitations and transport. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We study the validity of the Born-Oppenheimer approximation in chaotic dynamics. Using numerical solutions of autonomous Fermi accelerators. we show that the general adiabatic conditions can be interpreted as the narrowness of the chaotic region in phase space. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper we prove convergence to chaotic sunspot equilibrium through two learning rules used in the bounded rationality literature. The rst one shows the convergence of the actual dynamics generated by simple adaptive learning rules to a probability distribution that is close to the stationary measure of the sunspot equilibrium; since this stationary measure is absolutely continuous it results in a robust convergence to the stochastic equilibrium. The second one is based on the E-stability criterion for testing stability of rational expectations equilibrium, we show that the conditional probability distribution de ned by the sunspot equilibrium is expectational stable under a reasonable updating rule of this parameter. We also report some numerical simulations of the processes proposed.
Resumo:
OSAN, R. , TORT, A. B. L. , AMARAL, O. B. . A mismatch-based model for memory reconsolidation and extinction in attractor networks. Plos One, v. 6, p. e23113, 2011.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work, we use a nonlinear control based on Optimal Linear Control. We used as mathematical model a Duffing equation to model a supporting structure for an unbalanced rotating machine with limited power (non-ideal motor). Numerical simulations are performed for a set control parameter (depending on the voltage of the motor, that is, in the static and dynamic characteristic of the motor) The interaction of the non-ideal excitation with the structure may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the system. Chaotic behavior is obtained for values of the parameters. Then, the proposed control strategy is applied in order to regulate the chaotic behavior, in order to obtain a periodic orbit and to decrease its amplitude. Both methodologies were used in complete agreement between them. The purpose of the paper is to give suggestions and recommendations to designers and engineers on how to drive this kind of system through resonance.
Resumo:
We identify and analyze quasiperiodic and chaotic motion patterns in the time evolution of a classical, non-Abelian Bogomol'nyi-Prasad-Sommerfield (BPS) dyon pair at low energies. This system is amenable to the geodesic approximation which restricts the underlying SU(2) Yang-Mills-Higgs dynamics to an eight-dimensional phase space. We numerically calculate a representative set of long-time solutions to the corresponding Hamilton equations and analyze quasiperiodic and chaotic phase space regions by means of Poincare surfaces of section, high-resolution power spectra and Lyapunov exponents. Our results provide clear evidence for both quasiperiodic and chaotic behavior and characterize it quantitatively. Indications for intermittency are also discussed.
Resumo:
In this work we apply a nonperturbative approach to analyze soliton bifurcation ill the presence of surface tension, which is a reformulation of standard methods based on the reversibility properties of the system. The hypothesis is non-restrictive and the results can be extended to a much wider variety of systems. The usual idea of tracking intersections of unstable manifolds with some invariant set is again used, but reversibility plays an important role establishing in a geometrical point of view some kind of symmetry which, in a classical way, is unknown or nonexistent. Using a computer program we determine soliton solutions and also their bifurcations ill the space of parameters giving a picture of the chaotic structural distribution to phase and amplitude shift phenomena. (C) 2009 Published by Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We proposed a simple feedback control method to suppress chaotic behavior in oscillators with limited power supply. The small-amplitude controlling signal is applied directly to the power supply system, so as to alter the characteristic curve of the driving motor. Numerical results are presented showing the method efficiency for a wide range of control parameters. Moreover, we have found that, for some parameters, this kind of control may introduce coexisting periodic attractors with complex basins of attraction and, therefore, serious problems with predictability of the final state the system will asymptote to. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We consider a model for rattling in single-stage gearbox systems with some backlash consisting of two wheels with a sinusoidal driving; the equations of motions are analytically integrated between two impacts of the gear teeth. Just after each impact, a mapping is used to obtain the dynamical variables. We have observed a rich dynamical behavior in such system, by varying its control parameters, and we focus on intermittent switching between laminar oscillations and chaotic bursting, as well as crises, which are sudden changes in the chaotic behavior. The corresponding transient basins in phase space are found to be riddled-like, with a highly interwoven fractal structure. (C) 2004 Elsevier Ltd. All rights reserved.