958 resultados para Cadeias de Markov. Algoritmos genéticos
Resumo:
Dados de contagem de juvenis de siri-azul (Callinectes sapidus Rathbun, 1896) coletados em dois estuários do Rio Grande do Sul são objeto do presente estudo. Por se encontrarem zero-inflacionados, esses dados motivaram a formulação de modelos hierárquicos, que quantificam o efeito das covariáveis categóricas mês e local sobre a probabilidade de ocorrência e densidade dessas populações, levando em conta a detecção imperfeita. Foram também desenvolvidos modelos não-hierárquicos para comparação. Uma abordagem Bayesiana foi adotada para a estimação dos parâmetros dos modelos por simulação Monte Carlo com Cadeias de Markov (MCMC). A comparação entre modelos foi feita com o Critério de Informação da Deviância (DIC). Os modelos hierárquicos apresentaram ajustes melhores que os modelos convencionais, mitigaram o problema do excesso de zeros e permitiram analisar simultaneamente as probabilidades de ocorrência e a densidade de juvenis de siri-azul. No estuário da Lagoa dos Patos, a probabilidade de ocorrência de juvenis na Classe 2 aumenta com a distância da desembocadura, enquanto em Tramandaí os pontos intermediários apresentam as maiores probabilidades. Em ambos os estuários a ocorrência é mais provável nos meses de verão e de inverno. A densidade de juvenis da Classe 2 apresenta marcada variação em relação aos meses do ano sendo, em geral, maior no estuário de Tramandaí.
Resumo:
Forest fires are a serious threat to humans and nature from an ecological, social and economic point of view. Predicting their behaviour by simulation still delivers unreliable results and remains a challenging task. Latest approaches try to calibrate input variables, often tainted with imprecision, using optimisation techniques like Genetic Algorithms. To converge faster towards fitter solutions, the GA is guided with knowledge obtained from historical or synthetical fires. We developed a robust and efficient knowledge storage and retrieval method. Nearest neighbour search is applied to find the fire configuration from knowledge base most similar to the current configuration. Therefore, a distance measure was elaborated and implemented in several ways. Experiments show the performance of the different implementations regarding occupied storage and retrieval time with overly satisfactory results.
Resumo:
La finalitat d'aquest projecte és la realització d'un estudi comparatiu de l'algoritme basat en una colònia artificial d'abelles, Artificial Bee Colony (ABC), comparat amb un conjunt d'algoritmes fonamentats en el paradigma de la computació evolutiva. S'utilitzarà l'eficàcia a l'hora d'optimitzar diverses funcions com a mesura comparativa. Els algoritmes amb els quals es comparara l'algoritme ABC són: algoritmes genètics, evolució diferencial i optimització amb eixam de partícules.
Resumo:
objetivo de minimizar el retraso total en un ambiente con preparaciones quedependen de la secuencia. Se comparan los resultados obtenidos mediante laaplicación de los procedimientos de exploración de entornos AED, ANED,Recocido Simulado, Algoritmos Genéticos, Búsqueda Tabú y GRASP alproblema planteado. Los resultados sugieren que la Búsqueda Tabú es unatécnica viable de solución que puede proporcionar buenas soluciones cuandose considera el objetivo retraso total con tiempos de preparación dependientesde la secuencia.
Resumo:
O objetivo deste trabalho foi apresentar modelagens alternativas, uni e bivariadas, para avaliação da conversão alimentar (CA) de suínos da raça Piau, com uso de inferência bayesiana. Os efeitos de sexo e genótipo sobre a CA dos animais foram avaliados por meio de procedimentos de simulação de Monte Carlo via cadeias de Markov (MCMC) e de integração aproximada aninhada de Laplace (INLA). O modelo univariado foi avaliado com diferentes distribuições para o erro - normal (gaussiana), t de Student, gama, log-normal e skew-normal -, enquanto, para o modelo bivariado, considerou-se o erro normal. A distribuição skew-normal foi o modelo mais parcimonioso para inferir sobre a resposta direta (univariada) da CA aos efeitos de sexo e genótipo, os quais não foram significativos. O modelo bivariado foi capaz de identificar diferenças significativas no ganho de peso e no consumo de ração em níveis de significância não detectados pelo modelo univariado. Além disso, ele também foi capaz de detectar diferenças entre sexos, quando agrupados por genótipos NN (machos, 2,73±0,04; fêmeas, 2,68±0,04) e Nn (machos, 2,70±0,07; fêmeas, 2,64±0,07), e revelou maior acurácia e precisão nas inferências nutricionais. Em ambas as abordagens, o método bayesiano mostra-se flexível e eficiente para a avaliação do desempenho nutricional dos animais.
Resumo:
Os objetivos deste trabalho foram desenvolver e testar um algoritmo genético (AG) para a solução de problemas de gerenciamento florestal com restrições de integridade. O AG foi testado em quatro problemas, contendo entre 93 e 423 variáveis de decisão, sujeitos às restrições de singularidade, produção mínima e produção máxima, periodicamente. Todos os problemas tiveram como objetivo a maximização do valor presente líquido. O AG foi codificado em ambiente delphi 5.0 e os testes foram realizados em um microcomputador AMD K6II 500 MHZ, com memória RAM de 64 MB e disco rígido de 15GB. O desempenho do AG foi avaliado de acordo com as medidas de eficácia e eficiência. Os valores ou categorias dos parâmetros do AG foram testados e comparados quanto aos seus efeitos na eficácia do algoritmo. A seleção da melhor configuração de parâmetros foi feita com o teste L&O, a 1% de probabilidade, e as análises foram realizadas através de estatísticas descritivas. A melhor configuração de parâmetros propiciou ao AG eficácia média de 94,28%, valor mínimo de 90,01%, valor máximo de 98,48%, com coeficiente de variação de 2,08% do ótimo matemático, obtido pelo algoritmo exato branch and bound. Para o problema de maior porte, a eficiência do AG foi cinco vezes superior à eficiência do algoritmo exato branch and bound. O AG apresentou-se como uma abordagem bastante atrativa para solução de importantes problemas de gerenciamento florestal.
Resumo:
Este trabalho teve como objetivo avaliar uma estratégia utilizada para geração de alternativas de manejo na formulação e solução de problemas de planejamento florestal com restrições de recobrimento. O problema de planejamento florestal foi formulado via modelo I e modelo II, assim denominados por Johnson E Scheurman (1977), resultando em problemas de programação linear inteira com 63 e 42 alternativas de manejo, respectivamente. Conforme esperado, no problema formulado via modelo I não houve violação das restrições de recobrimento, enquanto no problema formulado via modelo II algumas unidades de manejo foram fracionadas, fato já esperado, uma vez que essa formulação não assegura a integridade das unidades de manejo. Na formulação via modelo II, para assegurar a integridade das unidades de manejo foi necessário reformular o problema como um problema de programação não-linear inteira, problema esse de solução ainda mais complexa do que os de programação linear inteira. As soluções eficientes dos problemas de programação não-linear inteira esbarram nas limitações de eficiências dos principais algoritmos de solução exata e na carência de aplicações dos algoritmos aproximativos na solução desse tipo de problema, a exemplo das metaeurísticas simulated annealing, busca tabu e algoritmos genéticos, tornando-se, portanto, um atrativo para pesquisas nessa área.
Resumo:
Atualmente vêm sendo desenvolvidas e utilizadas várias técnicas de modelagem de distribuição geográfica de espécies com os mais variados objetivos. Algumas dessas técnicas envolvem modelagem baseada em análise ambiental, nas quais os algoritmos procuram por condições ambientais semelhantes àquelas onde as espécies foram encontradas, resultando em áreas potenciais onde as condições ambientais seriam propícias ao desenvolvimento dessas espécies. O presente estudo trata do uso da modelagem preditiva de distribuição geográfica de espécies nativas, através da utilização de algoritmo genético, como ferramenta para auxiliar o entendimento dos padrões de distribuição do bioma cerrado no Estado de São Paulo. A metodologia empregada e os resultados obtidos foram considerados satisfatórios para a geração de modelos de distribuição geográfica de espécies vegetais, baseados em dados abióticos, para as regiões de estudo. A eficácia do modelo em predizer a ocorrência de espécies do cerrado é maior se forem utilizados apenas pontos de amostragem com fisionomias de cerrado, excluindo-se áreas de transição. Para minimizar problemas decorrentes da falta de convergência do algoritmo utilizado GARP ("Genetic Algorithm for Rule Set Production"), foram gerados 100 modelos para cada espécie modelada. O uso de modelagem pode auxiliar no entendimento dos padrões de distribuição de um bioma ou ecossistema em uma análise regional.
Resumo:
El objetivo fundamental del libro es el de facilitar al alumno una visión integral de las técnicas mataheuisticas orientado a la optimización. Los temas tratados han sido descompuesto en : 1. Introducción, 2. Redes Neuronales, 3. Algoritmos Genéticos, 4. Recocido simulado, 5. Búsqueda Tabú, 6.Otras técnicas. El trabajo ha sido desarrollado en el departamento de Organización y Gestión de Empresas en la Escuela Técnica Superior de Ingenieros Industriales. El trabajo permitirá instaurar metodologías que motiven más directamente a los alumnos en su aprendizaje.
Resumo:
El trabajo ha sido desarrollado en el Departamento de Organización y Gestión de Empresas en la Escuela Técnica Superior de Ingeniería Industrial de la Universidad de Valladolid. El objetivo fundamental del libro producto del proyecto, es el de facilitar al alumno una visión integral de las técnicas metaheurísticas orientadas a la optimización. Los temas tratados se desglosan en: 1) Introducción, 2) Redes neuronales, 3) Algoritmos genéticos, 4) Recocido simulado, 5) Búsqueda Tabú, 6) Otras técnicas. El trabajo permitirá instaurar metodologías que motiven más directamente a los alumnos en su aprendizaje.
Resumo:
Los algoritmos genéticos son herramientas de búsqueda global que permiten obtener soluciones a múltiples problemas que están basados en la teoría neo-darwiniana de la evolución, que defiende que los individuos más aptos sobreviven y se reproducen, mientras que los menos aptos perecen.. En esta investigación se propone la combinación del aprendizaje y la herencia para solucionar problemas en entornos variables con algoritmos genéticos, aumentando su velocidad de búsqueda y disminuyendo el coste del uso del aprendizaje. Se plantean dos nuevas variaciones en los algoritmos genéticos, el efecto Baldwin probalístico y la evolución lamarckiana probabilística. Ambas permiten el aprendizaje y la transmisión de la información asimilada de padres a hijos.. En el trabajo se muestran la importancia del aprendizaje para facilitar una correcta adaptación al entorno variable, de localizar un buen punto de partida para comenzar el aprendizaje y la conveniencia de permitir la herencia de la información aprendida..
Resumo:
La creciente preocupación y concienciación de la sociedad respecto el medio ambiente, y en consecuencia la legislación y regulaciones generadas inducen a la modificación de los procesos productivos existentes en la industria química. Las configuraciones iniciales deben modificarse para conseguir una mayor integración de procesos. Para este fin se han creado y desarrollado diferentes metodologías que deben facilitar la tarea a los responsables del rediseño. El desarrollo de una metodología y herramientas complementarias es el principal objetivo de la investigación aquí presentada, especialmente centrada en el desarrollo y la aplicación de una metodología de optimización de procesos. Esta metodología de optimización se aplica sobre configuraciones de proceso existentes y pretende encontrar nuevas configuraciones viables según los objetivos de optimización fijados. La metodología tiene dos partes diferenciadas: la primera se basa en un simulador de procesos comercial y la segunda es la técnica de optimización propiamente dicha. La metodología se inicia con la elaboración de una simulación convenientemente validada que reproduzca el proceso existente, en este caso una papelera no integrada que produce papel estucado de calidad, para impresión. A continuación la técnica de optimización realiza una búsqueda dentro del dominio de los posibles resultados, en busca de los mejores resultados que satisfazcan plenamente los objetivos planteados. Dicha técnica de optimización está basada en los algoritmos genéticos como herramienta de búsqueda, junto a un subprograma basado en técnicas de programación matemática para el cálculo de resultados. Un número reducido de resultados son finalmente escogidos y utilizados para modificar la simulación existente fijando la redistribución de los flujos del proceso. Los resultados de la simulación del proceso determinan en último caso la viabilidad técnica de cada reconfiguración planteada. En el proceso de optimización, los objetivos están definidos en una función objetivo dentro de la técnica de optimización. Dicha función rige la búsqueda de resultados. La función objetivo puede ser individual o una combinación de objetivos. En el presente caso, la función persigue una minimización del consumo de agua y una minimización de la pérdida de materia prima. La optimización se realiza bajo restricciones para alcanzar este objetivo combinado en forma de una solución de compromiso. Producto de la aplicación de esta metodología se han obtenido resultados interesantes que significan una mejora del cierre de circuitos y un ahorro de materia prima, sin comprometer al mismo tiempo la operabilidad del proceso producto ni la calidad del papel.
Resumo:
A partir de las teorías dialógicas de Mijaíl Bajtín, la Comunicación pretende demostrar que la calidad de las arquitecturas del futuro dependerá de la posibilidad de construir con ellas un paisaje cultural, definido en los términos del arquitecto Amos Rapoport, que consiga tener un valor estético, científico y ético, dialógicos. Esto, tanto respecto a las relaciones entre naturaleza y técnica como en cuanto a las posibles vinculaciones entre forma construida y comportamiento social. Los modernos algoritmos genéticos no deben escapar de esta disciplina general de evaluación dialógica, sin la cual, cualquier paisaje construido sería “automáticamente” arquitectura. Ello obliga, necesariamente, a una interacción entre disciplinas y a una formación interdisciplinar del arquitecto.
Resumo:
A comparação de dados de mercado é o método mais empregado em avaliação de imóveis. Este método fundamenta-se na coleta, análise e modelagem de dados do mercado imobiliário. Porém os dados freqüentemente contêm erros e imprecisões, além das dificuldades de seleção de casos e atributos relevantes, problemas que em geral são solucionados subjetivamente. Os modelos hedônicos de preços têm sido empregados, associados com a análise de regressão múltipla, mas existem alguns problemas que afetam a precisão das estimativas. Esta Tese investigou a utilização de técnicas alternativas para desenvolver as funções de preparação dos dados e desenvolvimento de modelos preditivos, explorando as áreas de descobrimento de conhecimento e inteligência artificial. Foi proposta uma nova abordagem para as avaliações, consistindo da formação de uma base de dados, ampla e previamente preparada, com a aplicação de um conjunto de técnicas para seleção de casos e para geração de modelos preditivos. Na fase de preparação dos dados foram utilizados as técnicas de regressão e redes neurais para a seleção de informação relevante, e o algoritmo de vizinhança próxima para estimação de valores para dados com erros ou omissões. O desenvolvimento de modelos preditivos incluiu as técnicas de regressão com superficies de resposta, modelos aditivos generalizados ajustados com algoritmos genéticos, regras extraídas de redes neurais usando lógica difusa e sistemas de regras difusas obtidos com algoritmos genéticos, os quais foram comparados com a abordagem tradicional de regressão múltipla Esta abordagem foi testada através do desenvolvimento de um estudo empírico, utilizando dados fornecidos pela Prefeitura Municipal de Porto Alegre. Foram desenvolvidos três formatos de avaliação, com modelos para análise de mercado, avaliação em massa e avaliação individual. Os resultados indicaram o aperfeiçoamento da base de dados na fase de preparação e o equilíbrio das técnicas preditivas, com um pequeno incremento de precisão, em relação à regressão múltipla.Os modelos foram similares, em termos de formato e precisão, com o melhor desempenho sendo atingido com os sistemas de regras difusas.
Resumo:
Este trabalho tem por objetivo promover uma análise dos ciclos econômicos de Brasil, Argentina e Estados Unidos, dando ênfase às mudanças de regimes ocorridas ao longo das flutuações experimentadas por esses países. Estudos recentes sobre ciclos têm argumentado em favor de ciclos internacionais de negócios. Nesse sentido, em especial, o trabalho visa testar a hipótese de um ciclo comum que afetaria ambos os países. A metodologia utilizada é a dos modelos MS-VAR – Markov switching vector autoregressions. Especificações univariadas são estimadas para o período de 1900 a 2000 e os resultados comparados aos fatos estilizados de cada país. Posteriormente um modelo multivariado é formulado para abrigar a hipótese de um ciclo conjunto, visto como mudanças comuns no processo estocástico do crescimento desses países. Os resultados sugerem que as evidências em favor desse ciclo comum são pouco robustas. As correlações contemporâneas estimadas apresentam valores bastante modestos. Em particular, existem significativas diferenças nos ciclos de Brasil, Argentina e Estados Unidos, cada um deles com características próprias e comportamentos singulares.