961 resultados para COLLAGEN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteroides fragilis is an opportunistic pathogen which can cause life threatening infections in humans and animals. The ability to adhere to components of the extracellular matrix, including collagen, is related to bacterial host colonisation. Collagen Far Western analysis of the B. fragilis outer membrane protein (OMP) fraction revealed the presence two collagen adhesin bands of ∼31 and ∼34 kDa. The collagen adhesins in the OMP fraction were separated and isolated by two-dimensional SDS-PAGE and also purified by collagen affinity chromatography. The collagen binding proteins isolated by both these independent methods were subjected to tandem mass spectroscopy for peptide identification and matched to a single hypothetical protein encoded by B. fragilis NCTC 9343 (BF0586), conserved in YCH46 (BF0662) and 638R (BF0633) and which is designated in this study as cbp1 (collagen binding protein). Functionality of the protein was confirmed by targeted insertional mutagenesis of the cbp1 gene in B. fragilis GSH18 which resulted in the specific loss of both the ∼31 kDa and the ∼34 kDa adhesin bands. Purified his-tagged Cbp1, expressed in a B. fragilis wild-type and a glycosylation deficient mutant, confirmed that the cbp1 gene encoded the observed collagen adhesin, and showed that the 34 kDa band represents a glycosylated version of the ∼31 kDa protein. Glycosylation did not appear to be required for binding collagen. This study is the first to report the presence of collagen type I adhesin proteins in B. fragilis and to functionally identify a gene encoding a collagen binding protein. © 2014 Galvão et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction of in vivo responses by implanted biomaterials is of great interest in the medical device field. Calcium phosphate bone cements (CPCs) can potentially promote natural bone remodelling and ingrowth in vivo and, as such are becoming more common place in a range of orthopaedic procedures. However, concerns remain regarding their mechanical and handling properties. Compressive modulus and fracture toughness of CPCs can be improved, without compromising injectability and setting time, through the incorporation of bovine collagen fibres1. Incorporation of marine derived collagen fibres has also yielded similar improvements2. It is hypothesised that, due to its role in bone formation and function, that incorporation of collagen in CPCs will also result in biological benefits.
The biological properties of α-TCP-CPC were largely unchanged by the incorporation of marine derived collagen. However, as a result of significant improvements to the mechanical properties, its incorporation may still result in a suitable alternative to some commercially available bone cements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gel aspiration-ejection (GAE) has recently been introduced as an effective technique for the rapid production of injectable dense collagen (IDC) gel scaffolds with tunable collagen fibrillar densities (CFDs) and microstructures. Herein, a GAE system was applied for the advanced production and delivery of IDC and IDC-Bioglass® (IDC-BG) hybrid gel scaffolds for potential bone tissue engineering applications. The efficacy of GAE in generating mineralizable IDC-BG gels (from an initial 75-25 collagen-BG ratio) produced through needle gauge numbers 8G (3.4 mm diameter and 6 wt% CFD) and 14G (1.6 mm diameter and 14 wt% CFD) was investigated. Second harmonic generation (SHG) imaging of as-made gels revealed an increase in collagen fibril alignment with needle gauge number. In vitro mineralization of IDC-BG gels was confirmed where carbonated hydroxyapatite was detected as early as day 1 in simulated body fluid, which progressively increased up to day 14. In vivo mineralization of, and host response to, acellular IDC and IDC-BG gel scaffolds were further investigated following subcutaneous injection in adult rats. Mineralization, neovascularization and cell infiltration into the scaffolds was enhanced by the addition of BG and at day 21 post injection, there was evidence of remodelling of granulation tissue into woven bone-like tissue in IDC-BG. SHG imaging of explanted scaffolds indicated collagen fibril remodelling through cell infiltration and mineralization over time. In sum, the results suggest that IDC-BG hybrid gels have osteoinductive properties and potentially offer a novel therapeutic approach for procedures requiring the injectable delivery of a malleable and dynamic bone graft that mineralizes under physiological conditions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to design a synthetic construct that mimics the natural bone extracellular matrix through innovative approaches based on simultaneous type I collagen electrospinning and nanophased hydroxyapatite (nanoHA) electrospraying using non-denaturating conditions and non-toxic reagents. The morphological results, assessed using scanning electron microscopy and atomic force microscopy (AFM), showed a mesh of collagen nanofibers embedded with crystals of HA with fiber diameters within the nanometer range (30 nm), thus significantly lower than those reported in the literature, over 200 nm. The mechanical properties, assessed by nanoindentation using AFM, exhibited elastic moduli between 0.3 and 2 GPa. Fourier transformed infrared spectrometry confirmed the collagenous integrity as well as the presence of nanoHA in the composite. The network architecture allows cell access to both collagen nanofibers and HA crystals as in the natural bone environment. The inclusion of nanoHA agglomerates by electrospraying in type I collagen nanofibers improved the adhesion and metabolic activity of MC3T3-E1 osteoblasts. This new nanostructured collagen–nanoHA composite holds great potential for healing bone defects or as a functional membrane for guided bone tissue regeneration and in treating bone diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to develop a bone substitute material capable of preventing or treating osteomyelitis through a sustainable release of vancomycin and simultaneously inducing bone regeneration. Porous heparinized nanohydroxyapatite (nanoHA)/collagen granules were characterized using scanning electron microscopy, micro-computed tomography and attenuated total reflectance Fourier transform infrared spectroscopy. After vancomycin adsorption onto the granules, its releasing profile was studied by UV molecular absorption spectroscopy. The heparinized granules presented a more sustainable release over time, in comparison with nonheparinized nanoHA and nanoHA/collagen granules. Vancomycin was released for 360 h and proved to be bioactive until 216 h. Staphylococcus aureus adhesion was higher on granules containing collagen, guiding the bacteria to the material with antibiotic, improving their eradication. Moreover, cytotoxicity of the released vancomycin was assessed using osteoblast cultures, and after 14 days of culture in the presence of vancomycin, cells were able to remain viable, increasing their metabolic activity and colonizing the granules, as observed by scanning electron microscopy and confocal laser scanning microscopy. These findings suggest that heparinized nanoHA/collagen granules are a promising material to improve the treatment of osteomyelitis, as they are capable of releasing vancomycin, eliminating the bacteria, and presented morphological and chemical characteristics to induce bone regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chez les patients asthmatiques, on retrouve un remodelage de la matrice extracellulaire des poumons, caractérisé par une augmentation du collagène ou fibrose de la couche sous-épithéliale des voies respiratoires. Le souffle, maladie inflammatoire chronique des voies respiratoires inférieures des chevaux matures, présente des similarités physiopathologiques avec l’asthme humain, incluant le remodelage. Ceci nous conduit à l’hypothèse que la fibrose de la couche sous-épithéliale pourrait être une composante des lésions pulmonaires chez les chevaux affectés, ce que notre étude avait pour objectif d’évaluer. Des biopsies pulmonaires périphériques réalisées par voie thoracoscopique ont été obtenues chez 5 chevaux témoins et 6 chevaux atteints du souffle, avant (T0) et après une stimulation antigénique de 30 jours avec du foin moisi et de la paille. Avant le début de l’étude, les sujets étaient en rémission clinique et ne démontraient aucun signe clinique de maladie. Un examen microscopique des échantillons prélevés a été réalisé après traitement au picrosirius-rouge, colorant spécifique des fibres de collagène. La surface du collagène de la couche sous-épithéliale a été mesurée et corrigée en fonction de la taille de la voie respiratoire en utilisant des techniques morphométriques standards. Les chevaux atteints de souffle ont une surface de collagène plus grande dans la couche sous-épithéliale (p<0.1) en comparaison avec les chevaux témoins. La fibrose de la couche sous-épithéliale demeure inchangée chez les chevaux malades après la stimulation antigénique de 30 jours. À T0, la fibrose de la couche sous-épithéliale est associée positivement aux variations maximales de pression pleurale et à la résistance pulmonaire chez les chevaux atteints de souffle. Les résultats de cette étude suggèrent qu’une fibrose de la couche sous-épithéliale est présente dans les voies respiratoires périphériques des chevaux atteints de souffle et contribue au déficit de fonction résiduel pulmonaire observé lors de rémission clinique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

School of Industrial Fisheries, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives of the present study are to find out the proximate composition of 20 commercially important tropical fish species on the west coast of India. To determine the collagen content in these commercially important fish species and fractionation of collagen into acid soluble collagen (ASC) and hot water soluble (insoluble) collagen (ISC). To classify fishes according to its collagen content and To study the different storage characteristics in the mince based product—surimi, from different species of fishes. The researcher tries to find out a suitable collagen source to incorporate in surimi. and studies the different storage qualities in the mince based product, surimi at different levels of collagen in different species of fishes. The optimum collagen level to get desirable texture and storage quality for mince based product. The researcher aims to develop some products from surimi with desirable level of collagen. And compare the products prepared from surimi of lesser collagen content fish containing desirable level of collagen with surimi prepared with high collagen content fish without collagen. This study gains in importance as there is littleinformation on the collagen content of different species of fishes in India. So far no attempt was made to classify fishes according to its collagen content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical composition and evaluation of Indian squid (Loligo duvauceli) mantle, epidermal connective tissue and tentacle is investigated in this current study. It is observed that squid mantle contains 22.2% total protein; 63.5% of the total protein is myofibrillar protein. The unique property of squid myofibrillar protein is its water solubility. Squid mantle contains 12.0% total collagen. Epidermal connective tissue has highest amounts of total collagen (17.8%). SDS-PAGE of total collagen identified high molecular weight α-, β- and γ- sub-chains. Amino acid profile analysis indicates that mantle and tentacle contain essential amino acids. Arginine forms a major portion of mantle collagen (272.5 g/100 g N). Isoleucine, glutamic acid and lysine are other amino acids that are found in significantly high amounts in the mantle. Sulphur containing cystine is deficit in mantle collagen. Papain digest of mantle and epidermal connective tissue is rich in uronic acid, while papain digest, collagenase digest and urea digest of epidermal connective tissue has significant amounts of sialic acid (25.2, 33.2 and 99.8 μmol /100 g, respectively). PAS staining of papain digest, collagenase digest and urea digest also identify the association of hexoses with low molecular weight collagen fragments. Histochemical sectioning also emphasized the localized distribution of collagen in epidermal and dermal region and very sparse fibres traverse the myotome bundles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In fish processing plants, there is huge amount of skin that is left as the waste. When this skin is taken and processed into fish collagen, it will save large amount of money that is used for extraction of collagen from other animal s.Fish collagen can be used as an alternative to replace mammalian collagen, especially collagen extracted from bovine, when we consider the outbreak of bovine spongiform encephalopathy (BSE), transmissible spongiform encephalopathy (TSE) and the foot - and-mouth disease (FMD) issues. BSE and TSE are progressive neurological disorders affecting cattles caused by proteinacious infectious particles called prions.The study aims in producing collagen that has been extracted from fish skin to replace other animal collagen so as to overcome the problem of other animal collagen issues. Also the study utilized the abandoned fish waste produced by fish processing industry since bone, skin, fin and scales of fish can be a useful source of collagen.