384 resultados para CEO2
Resumo:
Ceria (CeO2) and ceria-based composite materials, especially Ce1-xZrxO2 solid solutions, possess a wide range of applications in many important catalytic processes, such as three-way catalysts, owing to their excellent oxygen storage capacity (OSC) through the oxygen vacancy formation and refilling. Much of this activity has focused on the understanding of the electronic and structural properties of defective CeO2 with and without doping, and comprehending the determining factor for oxygen vacancy formation and the rule to tune the formation energy by doping has constituted a central issue in material chemistry related to ceria. However, the calculation on electronic structures and the corresponding relaxation patterns in defective CeO2-x oxides remains at present a challenge in the DFT framework. A pragmatic approach based on density functional theory with the inclusion of on-site Coulomb correction, i.e. the so-called DFT + U technique, has been extensively applied in the majority of recent theoretical investigations. Firstly, we review briefly the latest electronic structure calculations of defective CeO2(111), focusing on the phenomenon of multiple configurations of the localized 4f electrons, as well as the discussions of its formation mechanism and the catalytic role in activating the O-2 molecule. Secondly, aiming at shedding light on the doping effect on tuning the oxygen vacancy formation in ceria-based solid solutions, we summarize the recent theoretical results of Ce1-xZrxO2 solid solutions in terms of the effect of dopant concentrations and crystal phases. A general model on O vacancy formation is also discussed; it consists of electrostatic and structural relaxation terms, and the vital role of the later is emphasized. Particularly, we discuss the crucial role of the localized structural relaxation patterns in determining the superb oxygen storage capacity in kappa-phase Ce1-xZr1-xO2. Thirdly, we briefly discuss some interesting findings for the oxygen vacancy formation in pure ceria nanoparticles (NPs) uncovered by DFT calculations and compare those with the bulk or extended surfaces of ceria as well as different particle sizes, emphasizing the role of the electrostatic field in determining the O vacancy formation.
Resumo:
Using first principles calculations for O vacancy diffusion on CeO2(111), we locate a surface diffusion mechanism, the two-step O vacancy exchange one, which is more favored than the most common hopping mechanism. By analyzing the results, we identify quantitatively the physical origin of why the two-step exchange mechanism is preferred.
Resumo:
Using density functional theory with the inclusion of on-site Coulomb Correction, the O vacancy formation energies of CexZr1-xO2 solid solutions with a series of Ce/Zr ratios are calculated, and a model to understand the results is proposed. It consists of electrostatic and structural relaxation terms, and the latter is found to play a vital role in affecting the O vacancy formation energies. Using this model, several long-standing questions in the field, such as why ceria with 50% ZrO2 usually exhibit the best oxygen storage capacity, can be explained. Some implications of the new interpretation are also discussed.
Resumo:
Density-functional theory calculations have been carried out to systematically study single surface oxygen vacancies on CeO2(111). It is surprisingly found that multiple structures with the two excess electrons localized at different positions can exist. We show that the origin of the multiconfigurations of 4f electrons is a result of geometric relaxation on the surface and strong localization characteristic of 4f electrons in ceria. The importance of 4f electron structures is also presented and discussed. These results may possess implications for our understanding of materials with f electrons.
Resumo:
We perform DFT calculations to investigate the redox and formate mechanisms of water-gas-shift (WGS) reaction on Au/CeO2 catalysts. In the redox mechanism, we analyze all the key elementary steps and find that the OH cleavage is the key step. Three possible pathways of OH cleavage are calculated: (1) OHad '' + *'--> H-ad' + O-ad"; (2) H-ad' + OHad '' --> H-2(g) + O-ad '' + *'; and (3) OHad" + OHad '' --> 2O(ad '') + H-2(g) (*': the free adsorption sites on the oxides; ad': adsorption on the metal; ad": adsorption on the oxide, respectively). In the formate mechanism, we identify all the possible pathways for the formation and decomposition of surface formates in the WGS reaction. It is found that there is a shortcoming in the redox and formate mechanisms which is related to surface oxygen reproduction. Four possible pathways for producing surface oxygen are studied, and all the barriers of the four pathways are more than 1 eV. Our results suggest that the processes to reproduce surface oxygen in the reaction circle are not kinetically easy. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electronic structure and oxidation state of atomic Au adsorbed on a perfect CeO2(111) surface have been investigated in detail by means of periodic density functional theory-based calculations, using the LDA+U and GGA+U potentials for a broad range of U values, complemented with calculations employing the HSE06 hybrid functional. In addition, the effects of the lattice parameter a0 and of the starting point for the geometry optimization have also been analyzed. From the present results we suggest that the oxidation state of single Au atoms on CeO2(111) predicted by LDA+U, GGA+U, and HSE06 density functional calculations is not conclusive and that the final picture strongly depends on the method chosen and on the construction of the surface model. In some cases we have been able to locate two well-defined states which are close in energy but with very different electronic structure and local geometries, one with Au fully oxidized and one with neutral Au. The energy difference between the two states is typically within the limits of the accuracy of the present exchange-correlation potentials, and therefore, a clear lowest-energy state cannot be identified. These results suggest the possibility of a dynamic distribution of Au0 and Au+ atomic species at the regular sites of the CeO2(111) surface.
Resumo:
Photoelectron spectroscopy and scanning tunneling microscopy have been used to investigate how the oxidation state of Ce in CeO2-x(111) ultrathin films is influenced by the presence of Pd nanoparticles. Pd induces an increase in the concentration of Ce3+ cations, which is interpreted as charge transfer from Pd to CeO2-x(111) on the basis of DFT+U calculations. Charge transfer from Pd to Ce4+ is found to be energetically favorable even for individual Pd adatoms. These results have implications for our understanding of the redox behavior of ceria-based model catalyst systems.
Resumo:
No presente trabalho, procedeu-se a preparação e caracterização de catalisadores ambientais à base de óxido de cobre suportado em -alumina (suporte)/cordierita (substrato) e que tinham como promotor o óxido de cério. A argila foi conformada via eletroforese na forma de monolitos. Após queima à 1100°C, estes foram triturados, selecionado-se partículas com diâmetro entre 0,297 < Dp < 0,590 mm. Para a obtenção de -alumina e óxidos de cério e cobre sobre as partículas, utilizou-se a técnica de impregnação a seco (umidade incipiente), usando soluções de Al(OH)3, Ce(NO)3.6H2O e Cu(NO)3.3H2O, respectivamente . Após cada impregnação, os catalisadores foram secos e calcinados. A caracterização dos catalisadores foi feita através de experimentos de TPR (Redução à Temperatura Programada), microscopia eletrônica de varredura e espectrofotometria de absorção atômica, tendo como reação teste a oxidação de propeno com excesso de oxigênio. A caracterização da argila precursora da cordierita foi realizada através da difratometria de raios X . Procurou-se determinar neste trabalho os tipos de sítios de óxido de cobre (através do ensaio de TPR) e valores de ordens de reação e energia de ativação para a reação de oxidação de propeno através de estudos de cinética aplicada, relacionando-se os resultados com valores da literatura. Os valores de energia de ativação obtidos neste trabalho, para a oxidação de propeno, variaram de 82 kJ/mol à 100 kJ/mol e as ordens parciais de reação do propeno de 0,73 à 1,11. Todos os resultados acima foram obtidos em reator diferencial . O efeito da adição de óxido de cério nestes catalisadores também foi abordado neste trabalho.
Resumo:
Structural and textural studies of a CuO/TiO2 System modified by cerium oxide were conducted using Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and N-2 absorption (BET specific surface area). The introduction of a minor amount of CeO2 (Ce0.09Ti0.82O1.91CU0.09 sample) resulted in a material with the maximum surface area value. The results of Raman spectroscopy revealed the presence of only two crystalline phases, TiO2 anatase and CeO2 cerianite, with well-dispersed copper species. TEM micrographs showed a trend toward smaller TiO2 crystallites when the cerium oxide content was increased. The XPS analysis indicated the rise of a second peak in Ti 2p spectra with the increasing amount of CeO2 located at higher binding energies than that due to the Till in a tetragonal symmetry. The CuO/TiO2 system modified by CeO2 displayed a superior performance for methanol dehydrogenation than the copper catalyst supported only on TiO2 or CeO2.
Resumo:
X-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and x-ray absorption spectroscopy (XAS) techniques have been applied to characterize the surface composition and structure of a series of CuO-TiO2-CeO2 catalysts. For a small loading of cerium, ceria was mainly dispersed on the titania surface and a minor amount of CeO2 crystallite appeared. At higher loading of cerium, the CeO2 phase increased and the atomic Ce/Ti ratio values were smaller than the nominal composition, as a consequence of cerium agglomeration. This result suggests that only a fraction of cerium can be spread on the titania surface. For titanium-based mixed oxide, we observed that cerium is found as Ce3+ uniquely on the surface. The atomic Cu/(Ce+Ti) ratio values showed no influence from cerium concentration on the dispersion of copper, although the copper on the surface was shown to be dependent on the cerium species. For samples with a high amount of cerium, XPS analysis indicated the raise of second titanium species due cerium with spin-orbit components at higher binding energies than those presented by Ti4+ in a tetragonal structure. The structural results obtained by XAS are consistent with those obtained by XRD and XPS. (C) 2001 American Vacuum Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nanocrystalline ZrO2-12 mol % CeO2 powders were synthesized using a polymeric precursor method based on the Pechini process. X-ray diffraction (XRD) patterns showed that the method was effective to synthesize tetragonal zirconia single-phase. The mean crystallite size attained ranges from 6 to 15 nm. The BET surface areas were relatively high reaching 97 m(2)/g. Studies by nitrogen adsorption/desorption on powders, dilatometry of the compacts, and transmission electron microscopy (TEM) of the powders, were also developed to verify the particles agglomeration state. Both citric acid : ethylene glycol ratio and calcination temperature affected the powder morphology, which influenced the sinterability and microstructure of the sintered material, as showed by scanning electron microscopy (SEM). (C) 2001 Kluwer Academic Publishers.
Resumo:
This paper describes a simple method to co-precipitate CeO2 and Ce0.8Gd0.2O1.9-delta with ammonium hydroxide from solvents such as: water, ethylene glycol, ethyl alcohol and isopropyl alcohol. Characterization by Raman spectroscopy and XRD evidenced the formation of a solid solution of gadolinium-doped ceria at room temperature. Nanometric particles with crystallite size of 3.1 nm were obtained during synthesis using ethyl alcohol as solvent. This is a promising result compared with those mentioned in the literature, in which the smallest crystallite size reported was, 6.5 nm. (c) 2006 Elsevier B.V. All rights reserved.