917 resultados para CAPACITANCE SPECTROSCOPY
Resumo:
Radical formation in ultem following gamma-radiolysis has been reassessed, and the G(R*) values at different temperatures have been determined by ESR spectroscopy. The radical assignment and radical reactivity have been re-examined by photobleaching and thermal annealing studies. Photobleachable radical anions were found to comprise approximate to40% of the total number of radicals formed on radiolysis at 77 K. Spectral subtraction methods, ESR spectral simulations, measurement of g-values and the hyperfine splitting constants were used to identify the other radical intermediates. The principal chain scission radicals are formed due to scission of the main-chain at (i) the ether linkage, (ii) the isopropylidene group and (iii) the imide ring in the main chain. The side chain methyl groups of the isopropylidine units also lose hydrogen to form methylene radicals. The five-line spectrum observed to decay in the temperature range 370-430 K, which has not been assigned previously, has been identified as being characteristic of a di-substituted benzyl radical. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This article proposes a more accurate approach to dopant extraction using combined inverse modeling and forward simulation of scanning capacitance microscopy (SCM) measurements on p-n junctions. The approach takes into account the essential physics of minority carrier response to the SCM probe tip in the presence of lateral electric fields due to a p-n junction. The effects of oxide fixed charge and interface state densities in the grown oxide layer on the p-n junction samples were considered in the proposed method. The extracted metallurgical and electrical junctions were compared to the apparent electrical junction obtained from SCM measurements. (C) 2002 American Institute of Physics.
Resumo:
Ecosystem management such as plant residue retention and prescribed burning can significantly affect soil organic matter (SOM) composition and, thereby, the closely associated carbon (C) and nitrogen (N) cycling processes, which underpin terrestrial ecosystem productivity and sustainability. Humic acid (HA) is an important SOM component and its chemical composition has attracted much attention. Here we report the first application of N-14 nuclear magnetic resonance (NMR) spectroscopy to soil HA study, revealing the surprising existence of nitrate-N and ammonia-N in the HAs. This newly discovered HA nitrate-N, though in a relatively low concentrations, is closely related to soil N availability and responsive to plant residue management regimes in contrasting forest ecosystems. The HA nitrate-N may be a useful and sensitive biochemical indicator of SOM quality in response to different ecosystem management regimes.
Resumo:
The influence of change in land-use from native vegetation to pasture (20-71 yr after conversion), and subsequent change from pasture to eucalypt plantation (7-10 yr after conversion) on soil organic matter quality was investigated using C-13 CP/MAS NMR spectroscopy. We studied surface soil (0-10 cm) from six sites representing a range of soil, and climate types from south-western Australia. Total C in the samples ranged from 1.6 to 5.5%, but the relative proportions of the four primary spectral regions (alkyl, O-alkyl, aromatic and carboxylic) were similar across the sites, and changes due to land-use at each site were relatively minor. Main impacts of changed land-use were higher O-alkyl (carbohydrate) material under pasture than under native vegetation and plantation (P = 0.048), and lower aromatic C under pasture than under native vegetation (P = 0.027). The decrease in aromatic C in pasture soils was related to time since clearing. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Solid-state C-13 nuclear magnetic resonance (NMR) with cross-polarisation (CP) and magic-angle-spinning (MAS) was used to: (a) examine the changes in carbon (C) composition of windrowed harvest residues during the first 3 years of hoop pine plantations in subtropical Australia; (b) assess the impacts of windrowed harvest residues on soil organic matter (SOM) composition and quality in the 0-10 cm soil layer. Harvest residues were collected from 0-, 1-, 2- and 3-year-old windrows of ca. 2.5 m width (15 m apart for 0-, 1- and 2-year-old sites and 10 m apart for 3-year-old site). Soils from the 0 to 10 cm soil layer were collected from the 1-, 2- and 3-year-old sites. The 13C NMR spectra of the harvest residues indicated the presence of lignin in the hoop pine wood, foliage and newly incorporated organic matter (NIOM). Condensed tannin structures were found in the decay-resistant bark, small wood and foliage, but were absent in other residue components and SOM. The NMR spectra of small wood samples contained condensed tannin structures because the outer layer of bark was not removed. NIOM showed a shift from foliage-like structures (celluloses) to lignin-type structures, indicating an incorporation of woody residues from the decomposing harvest residues. Suberins were also present in the small wood, foliage and bark. The 13C CP NMR spectra of SOM indicated that in areas where windrows were present, SOM did not show compositional changes. However, an increase in SOM quality under the windrows in the second year after their formation as characterised by the alkyl C/O-alkyl C (A/O-A) ratio was mainly due to inputs from the decomposition of the labile, readily available components of the windrowed harvest residues. (C) 2002 Published by Elsevier Science B.V.
Resumo:
The ESR spectra of poly(chlorotrifluoroethylene) were recorded following gamma-radiolysis under vacuum at room temperature and 77 K. The very broad spectrum at 77 K revealed little fine structure with which to identity the radicals formed upon irradiation, but subsequent photobleaching and annealing studies, together with radiolytic studies at higher temperatures, afforded scope for making radical assignments. Both main-chain radicals and a range of chain-end radicals have been identified. The G-values for radical formation were 1.55, 0.36 and 0.32 at 77 K, 273 K and room temperature, respectively. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper discusses the photodiode capacitance dependence on imposed light and applied voltage using different devices. The first device is a double amorphous silicon pin-pin photodiode; the second one a crystalline pin diode and the last one a single pin amorphous silicon diode. Double amorphous silicon diodes can be used as (de)multiplexer devices for optical communications. For short range applications, using plastic optical fibres, the WDM (wavelength-division multiplexing) technique can be used in the visible light range to encode multiple signals. Experimental results consist on measurements of the photodiode capacitance under different conditions of imposed light and applied voltage. The relation between the capacitive effects of the double diode and the quality of the semiconductor internal junction will be analysed. The dynamics of charge accumulations will be measured when the photodiode is illuminated by a pulsed monochromatic light.
Resumo:
Background: Protein-energy wasting (PEW), associated with inflammation and overhydration, is common in haemodialysis (HD) patients and is associated with high morbidity and mortality. Objective: Assess the relationship between nutritional status, markers of inflammation and body composition through bioimpedance spectroscopy (BIS) in HD patients. Methods: This observational, cross-sectional, single centre study, carried out in an HD centre in Forte da Casa (Portugal), involved 75 patients on an HD programme. In all participating patients, the following laboratory tests were conducted: haemoglobin, albumin, C-reactive protein (CRP) and 25-hydroxyvitamin D3 [25(OH)D3]. The body mass index of all patients was calculated and a modified version of subjective global assessment (SGA) was produced for patients on dialysis. Intracellular water (ICW) and extracellular water (ECW) were measured by BIS (Body Composition Monitor®, Fresenius Medical Care®) after the HD session. In statistical analysis, Spearman’s correlation was used for the univariate analysis and linear regression for the multivariate analysis (SPSS 14.0). A P value of <.05 was considered statistically significant. Results: PEW, inversely assessed through the ICW/body weight (BW) ratio, was positively related to age (P<.001), presence of diabetes (P=.004), BMI (P=.01) and CRP (P=.008) and negatively related to albumin (p=.006) and 25(OH)D3 (P=.007). Overhydration, assessed directly through the ECW/BW ratio, was positively related with CRP (P=.009) and SGA (P=.03), and negatively with 25(OH)D3 (P=.006) and BMI (P=.01). In multivariate analysis, PEW was associated with older age (P<.001), the presence of diabetes (P=.003), lower 25(OH)D3 (P=.008), higher CRP (P=.001) and lower albumin levels (P=.004). Over-hydration was associated with higher CRP (P=.001) and lower levels of 25(OH)D3 (P=.003). Conclusions: Taking these results into account, the ICW/BW and ECW/BW ratios, assessed with BIS, have proven to be good markers of the nutritional and inflammatory status of HD patients. BIS may be a useful tool for regularly assessing the nutritional and hydration status in these patients and may allow nutritional advice to be improved and adjusted.
Resumo:
In this report, we propose an AC response equivalent circuit model to describe the admittance measurements of Cu2ZnSnS4 thin film solar cell grown by sulphurization of stacked metallic precursors. This circuit describes the contact resistances, the back contact, and the heterojunction with two trap levels. The study of the back contact resistance allowed the estimation of a back contact barrier of 246 meV. The analysis of the trap series with varying temperature revealed defect activation energies of 45 meV and 113 meV. The solar cell’s electrical parameters were obtained from the J-V curve: conversion efficiency, 1.21%; fill factor, 50%; open circuit voltage, 360 mV; and short circuit current density, 6.8 mA/cm2.
Resumo:
Dalton Trans., 2003, 3328-3338
Resumo:
Leaves are mainly responsible for food production in vascular plants. Studying individual leaves can reveal important characteristics of the whole plant, namely its health condition, nutrient status, the presence of viruses and rooting ability. One technique that has been used for this purpose is Electrical Impedance Spectroscopy, which consists of determining the electrical impedance spectrum of the leaf. In this paper we use EIS and apply the tools of Fractional Calculus to model and characterize six species. Two modeling approaches are proposed: firstly, Resistance, Inductance, Capacitance electrical networks are used to approximate the leaves’ impedance spectra; afterwards, fractional-order transfer functions are considered. In both cases the model parameters can be correlated with physical characteristics of the leaves.
Resumo:
[CoCl(-Cl)(Hpz(Ph))(3)](2) (1) and [CoCl2(Hpz(Ph))(4)] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))(3) and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible (CoCoIII)-Co-II oxidations and (CoCoI)-Co-II reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). Insitu X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co-III site. Complex 2 showed low invitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.
Resumo:
A genetic algorithm used to design radio-frequency binary-weighted differential switched capacitor arrays (RFDSCAs) is presented in this article. The algorithm provides a set of circuits all having the same maximum performance. This article also describes the design, implementation, and measurements results of a 0.25 lm BiCMOS 3-bit RFDSCA. The experimental results show that the circuit presents the expected performance up to 40 GHz. The similarity between the evolutionary solutions, circuit simulations, and measured results indicates that the genetic synthesis method is a very useful tool for designing optimum performance RFDSCAs.
Resumo:
The paper presents a RFDSCA automated synthesis procedure. This algorithm determines several RFDSCA circuits from the top-level system specifications all with the same maximum performance. The genetic synthesis tool optimizes a fitness function proportional to the RFDSCA quality factor and uses the epsiv-concept and maximin sorting scheme to achieve a set of solutions well distributed along a non-dominated front. To confirm the results of the algorithm, three RFDSCAs were simulated in SpectreRF and one of them was implemented and tested. The design used a 0.25 mum BiCMOS process. All the results (synthesized, simulated and measured) are very close, which indicate that the genetic synthesis method is a very useful tool to design optimum performance RFDSCAs.
Resumo:
A study of chemical transformations of cork during heat treatments was made using colour variation and FTIR analysis. The cork enriched fractions from Quercus cerris bark were subjected to isothermal heating in the temperature range 150–400 ◦C and treatment time from 5 to 90 min. Mass loss ranged from 3% (90 min at 150 ◦C) to 71% (60 min at 350 ◦C). FTIR showed that hemicelluloses were thermally degraded first while suberin remained as the most heat resistant component. The change of CIE-Lab parameters was rapid for low intensity treatments where no significant mass loss occurred (at 150 ◦C L* decreased from the initial 51.5 to 37.3 after 20 min). The decrease in all colour parameters continued with temperature until they remained substantially constant with over 40% mass loss. Modelling of the thermally induced mass loss could be made using colour analysis. This is applicable to monitoring the production of heat expanded insulation agglomerates.