989 resultados para C-2
Resumo:
The crystal structures of alkyl 2-deoxy-alpha-D-arabino-hexopyranosides, with the alkyl chain lengths from C-8 to C-18, are established by the single crystal X-ray structural determination. The even-alkyl chain length derivatives crystallized orthorhombic, with space group P2(1)2(1)2(1), whereas the odd-alkyl chain length derivatives crystallized monoclinic, with space group P2(1). The sugar moieties retained a C-4(1) chair conformation and the conformation of the alkyl chains was all-trans. The molecules formed a bilayer structure, in which alkyl chains were interdigitated.The hydrogen bonds, originating from the sugar moieties, were observed in adjacent layers and also within the same layer, resulting in the formation of infinite chains. The alkyl chains arranged parallel to each other and formed planar structures. The thermal properties of the alkyl 2-deoxy glucosides were analyzed further. It was observed that none of the derivatives exhibited mesomorphism. This study establishes that the absence of the hydroxyl group at C-2 of the sugar moiety results in a non-mesogenic nature of the alkyl 2-deoxy-alpha-D-glycosides, as opposed to the profound mesogenic nature of the normal alkyl glycosides.
Resumo:
The molecule of title compound, C11H10ClNO, is close to being planar (r.m.s deviation for the non-H atoms = 0.017 angstrom). In the crystal, molecules interact by way of O-H center dot center dot center dot O hydrogen bonds, generating C(2) chains propagating in [010]. The crystal structure is consolidated by C-H center dot center dot center dot pi interactions and aromatic pi-pi stacking interactions [centroid-centroid distance = 3.661 (2) angstrom].
Resumo:
The title compound, C11H10ClNO, is close to being planar (r.m.s deviation for the non-H atoms = 0.026 angstrom). In the crystal,molecules are linked by O-H center dot center dot center dot O hydrogen bonds, generating C(2) chains, and weak C-H center dot center dot center dot pi interactions and aromatic pi-pi stacking interactions [centroid-centroid distance = 3.713 (3) angstrom] help to consolidate the sturcture.
Resumo:
The ternary metal nucleotide complexes [Ni(en)1.3(H2O)1.4(H2O)2][Ni(5?-dGMP)2(en)0.7-(H2O)0.6(H2O)2]·7H2O (1) and [Ni(en)2(H2O)2][Ni(5?-GMP)2(H2O)4]·6H2O (2)(en = ethylenediamine, 5?-dGMP = 2?-deoxyguanosine 5?-monophosphate, 5?-GMP = guanosine 5?-monophosphate) have been prepared and their structures analyzed by X-ray diffraction methods. Both compounds crystallise in the space group C2221 with a= 8.810(1), b= 25.090(4), c= 21.084(1)Å, and Z= 4 for (1) and a= 8.730(1), b= 25.691(4), c= 21.313(5)Å, and Z= 4 for (2). The structures were deduced from the analogous CoIII complexes and refined by full-matrix least-squares methods to final R values of 0.087 and 0.131 for 1 211 and 954 reflections for (1) and (2) respectively. An interesting feature of the deoxyribonucleotide complex (1) is that en is not totally labilized from the metal centre on nucleotide co-ordination, as observed in corresponding ribonucleotide complexes. Apart from extensive intra- and inter-molecular hydrogen bonding, the structures are stabilized by significant intracomplex base�base and base�sugar interactions. The nucleotides in both complexes have an anti base, C(2?)-endo sugar pucker, and gauche�gauche conformation about the C(4?)�C(5?) bond.
Resumo:
Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalyst with varying atomic ratio of Pt to Ti, namely, 1: 1, 2: 1, and 3: 1, is prepared by sol-gel method and its electrocatalytic activity toward oxygen-reduction reaction (ORR) is evaluated for the application in polymer electrolyte fuel cells (PEFCs). The optimum atomic ratio of Pt to Ti in Pt-TiO2/C and annealing temperature are established by cyclic voltammetry and fuel-cell-polarization studies. Pt-TiO2/C annealed at 750 degrees C with Pt and Ti in atomic ratio of 2: 1, namely, 750 Pt-TiO2/C (2: 1), shows enhanced electrocatalytic activity toward ORR. It is found that the incorporation of TiO2 with Pt ameliorates both electrocatalytic activity and stability of cathode in relation to pristine Pt cathode, currently being used in PEFCs. A power density of 0.75 W/cm(2) is achieved at 0.6 V for the PEFC with 750 Pt-TiO2/C (2: 1) as compared with 0.62 W/cm(2) at 0.6 V achieved with the PEFC comprising Pt/C as cathode catalyst while operating under identical conditions. Interestingly, carbon-supported Pt-TiO2 cathode exhibits only 6% loss in electrochemical surface area after 5000 potential cycles while it is as high as 25% for Pt/C. DOI: 10.1115/1.4002466]
Resumo:
2,3-Dihydroxybenzoic acid decarboxylase inAspergillus niger was induced by many substrate analogs including salicylate and gentisate. Catechol, which is the product, induced the enzyme tenfold. The purified enzyme was competitively inhibited by manyortho substituted benzoic acids. The Ki values for salicylate,o-fluoro ando-chloro benzoic acids were 0.12 mM, 0.12 mM, and 0.13 mM respectively; these values were lower than the Km value for the substrate. As the size of the group in theortho position increased, as in the case of bromo- and iodo-derivatives, there was an increase in their Ki values. The C-2 hydroxyl group was essential both for the induction and for interaction with the enzyme. The C-3 hydroxyl group was not necessary for induction or inhibition, but it might be essential for the catalysis.
Resumo:
The crystal structure of 2',3'-O-isopropylidene inosine shows a number of interesting features. The four independent molecules in the asymmetric unit exhibit significant conformational variations. Ribose puckers fall in the O(4')-exo region, unfavourable in unsubstituted nucleosides. Hypoxanthine bases show base-pairing (I.I) in a manner analogous to the guanine self pairs (G.G) in 2',3'-O-isopropylidene guanosine but with a C(2)-H…O(6) hydrogen bond instead of N(2)-H…O(6).
Resumo:
The ternary metal deoxyribonucleotide complex [Cu(bzim)(5?-dGMP)(H2O)3](bzim = benzimidazole, 5?-dGMP = 2?-deoxyguanosine 5?-monophosphate) has been prepared and the structure analysed by X-ray diffraction. The compound crystallizes in the space group P1 with a= 7.069(6), b= 13.959(10), c= 14.204(12)Å, ?= 75.12(6), ?= 94.15(6), ?= 97.98(6)° and Z= 2. The structure was solved by the heavy-atom method and refined by full-matrix least-squares procedures on the basis of 2813 observed [I[gt-or-equal] 3?(I)] reflections to final R and R? values of 0.050 and 0.052 respectively. There are two independent molecules in the asymmetric unit and both copper(II) centres have square-pyramidal co-ordination geometry. An unusual feature of the structure is the co-ordination of the metal by N(7) of the base, in the presence of a ?-aromatic amine, bzim. The structure is stabilized by intermolecular base�bzim stacking. The nucleotides of both the molecules have an anti conformation about the glycosyl bond, and a gauche-gauche conformation about the C(4?)�C(5?) bond. A feature of particular interest is the unusual sugar conformation. The base furanose rings of the two nucleotide molecules adopt C(3?)-exo/C(2?)-endo pucker and C(3?)-exo pucker respectively.
Resumo:
With the objective of investigating the direct conversion of inorganic carbonates such as CaCO3 to hydrocarbons, assisted by transition metal ions, we have carried out studies on CaCO3 in an intimate admixture with iron oxides (FeCaCO) with a wide range of Fe/Ca mole ratios (x), prepared by co-precipitation. The hydrogen reduction of FeCaCO at 673 K gives up to 23% yield of the hydrocarbons CH4, C2H4, C2H6 and C3H8, leaving solid iron residues in the form of iron metal, oxides and carbide particles. The yield of hydrocarbons increases with x and the conversion of hydrocarbons occurs through the formation of CO. While the total yield of hydrocarbons obtained by us is comparable to that in the Fischer-Tropsch synthesis, the selectivity for C-2-C-3 hydrocarbons reported here is noteworthy.
Resumo:
2,3-Unsaturated 3-arylsulfinyl pyranosides undergo nucleophilic additions at C-2, with facial selectivities depending on the nucleophile and the substituent on sulfinyl sulfur. The reactions of such sugar vinyl sulfoxides lead to the addition of nucleophile preferring an axial orientation at C-2, with concomitant formation of an allylic bond at C-3 to C-4. This trend in the addition pattern is observed for primary amine, carbon and sulfur nucleophiles, whereas secondary amines prefer an equatorial addition at C-2. The effect of p-tolylthio-versus (p-isopropylphenyl)thio vinyl sulfoxide is that the equatorial nucleophilic addition is preferred even more with the latter vinyl sulfoxide. (C) 2013 Published by Elsevier Ltd.
Resumo:
Detection of explosives, especially trinitrotoluene (TNT), is of utmost importance due to its highly explosive nature and environmental hazard. Therefore, detection of TNT has been a matter of great concern to the scientific community worldwide. Herein, a new aggregation-induced phosphorescent emission (AIPE)-active iridium(III) bis(2-(2,4-difluorophenyl)pyridinato-NC2') (2-(2-pyridyl)benzimidazolato-N,N') complex FIrPyBiz] has been developed and serves as a molecular probe for the detection of TNT in the vapor phase, solid phase, and aqueous media. In addition, phosphorescent test strips have been constructed by impregnating Whatman filter paper with aggregates of FIrPyBiz for trace detection of TNT in contact mode, with detection limits in nanograms, by taking advantage of the excited state interaction of AIPE-active phosphorescent iridium(III) complex with that of TNT and the associated photophysical properties.
Resumo:
We prove two density theorems for quadrature domains in , . It is shown that quadrature domains are dense in the class of all product domains of the form , where is a smoothly bounded domain satisfying Bell's Condition R and is a smoothly bounded domain and also in the class of all smoothly bounded complete Hartogs domains in C-2.
Resumo:
We have synthesized a series of 4'-aryl substituted 2,2':6',2 `'-terpyridine (terpy) derivatives, namely 4'-(4-methylphenyl)-2,2':6',2 `'-terpyridine (C-1), 4'-(2-furyl)-2,2':6'2 `'-terpyridine (C-2), and 4'-(3,4,5-trimethoxyphenyl)-2,2':6',2 `'-terpyridine (C-3). The synthesized terpy compounds were characterized by elemental analyses, FTIR, NMR (H-1 and C-13), and ESI-Mass spectrometry. Photophysical, electrochemical and thermal properties of terpy compounds were systematically studied. Maximum excitation band was observed between 240 and 330 nm using UV-visible spectra, and maximum emission peaks from PL spectra were observed at 385, 405 and 440 nm for C-1, C-2 and C-3 respectively. Fluorescence lifetime (tau) of the fluorophores was found to be 035 and 1.55 ns at the excitation wavelength of 406 nm for C-1 and C-2 respectively, and tau value for C-3 was found to be 0.29 ns at the excitation wavelength of 468 nm. We noticed that the calculated values of HOMO energy levels were increased from 5.96 (C-1) to 6.08 (C-3) eV, which confirms that C-3 derivative is more electrons donating in nature. The calculated electrochemical band gaps were 2.95, 2.82 and 3.02 eV for C-1, C-2 and C-3 respectively. These blue fluorescent emitter derivatives can be used as an electron transport and electroluminescent material to design the blue fluorescent organic light emitting diode (OLED) applications. (C) 2015 Elsevier B.V: All rights reserved.
Resumo:
Hopanoids are a class of sterol-like lipids produced by select bacteria. Their preservation in the rock record for billions of years as fossilized hopanes lends them geological significance. Much of the structural diversity present in this class of molecules, which likely underpins important biological functions, is lost during fossilization. Yet, one type of modification that persists during preservation is methylation at C-2. The resulting 2-methylhopanoids are prominent molecular fossils and have an intriguing pattern over time, exhibiting increases in abundance associated with Ocean Anoxic Events during the Phanerozoic. This thesis uses diverse methods to address what the presence of 2-methylhopanes tells us about the microbial life and environmental conditions of their ancient depositional settings. Through an environmental survey of hpnP, the gene encoding the C-2 hopanoid methylase, we found that many different taxa are capable of producing 2-methylhopanoids in more diverse modern environments than expected. This study also revealed that hpnP is significantly overrepresented in organisms that are plant symbionts, in environments associated with plants, and with metabolisms that support plant-microbe interactions; collectively, these correlations provide a clue about the biological importance of 2-methylhopanoids. Phylogenetic reconstruction of the evolutionary history of hpnP revealed that 2-methylhopanoid production arose in the Alphaproteobacteria, indicating that the origin of these molecules is younger than originally thought. Additionally, we took genetic approach to understand the role of 2-methylhopanoids in Cyanobacteria using the filamentous symbiotic Nostoc punctiforme. We found that hopanoids likely aid in rigidifying the cell membrane but do not appear to provide resistance to osmotic or outer membrane stressors, as has been shown in other organisms. The work presented in this thesis supports previous findings that 2-methylhopanoids are not biomarkers for oxygenic photosynthesis and provides new insights by defining their distribution in modern environments, identifying their evolutionary origin, and investigating their role in Cyanobacteria. These efforts in modern settings aid the formation of a robust interpretation of 2-methylhopanes in the rock record.
Resumo:
Two new highly oxygenated nortriterpenoids with a unique norcycloartane skeleton, micrandilactones B and C (1-2), were isolated from Schisandra micrantha; micrandilactone C ( 2) exhibited an EC50 value of 7.71 mu g/mL (SI > 25.94) against HIV-1 replication with minimal cytotoxicity, and the potent anti-HIV-1 activity and unique structural features of 2 make it a promising lead for therapeutic development of a new generation of anti-HIV drug.