929 resultados para C INCORPORATION MECHANISMS
Resumo:
Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, sigma(70), of E. coli. Though both factors are known to interact with the C-terminal region of sigma(70), the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to or 70 with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with sigma(70) studied by using the yeast two-hybrid system revealed that region 4 of sigma(70) is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of sigma(70) as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to sigma(70).
Resumo:
The intervertebral disc is composed of concentrically arranged components: annulus fibrosus, the transition zone, and central nucleus pulposus. The major disc cell type differs in various parts of the intervertebral disc. In annulus fibrosus a spindle shaped fibroblast-like cell mainly dominates, whereas in central nucleus pulposus the more rounded chondrocyte-like disc cell is the major cell type. At birth the intervertebral disc is well vascularized, but during childhood and adolescence blood vessels become smaller and less numerous. The adult intervertebral disc is avascular and is nourished via the cartilage endplates. On the other hand, degenerated and prolapsed intervertebral discs are again vascularized, and show many changes compared to normal discs, including: nerve ingrowth, change in collagen turnover, and change in water content. Furthermore, the prolapsed intervertebral disc tissue has a tendency to decrease in size over time. Growth factors are polypeptides which regulate cell growth, extracellular matrix protease activity, and vascularization. Oncoproteins c-Fos and c-Jun heterodimerize, forming the AP-1 transcription factor which is expressed in activated cells. In this thesis the differences of growth factor expression in normal intervertebral disc, the degenerated intervertebral disc and herniated intervertebral disc were analyzed. Growth factors of particular interest were basic fibroblast growth factor (bFGF or FGF-2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and transforming growth factor beta (TGFβ). Cell activation was visualized by the expression of the AP-1 transcription promoters c-Fos and c-Jun. The expression was shown with either mono- or polyclonal antibodies by indirect avidin-biotin-peroxidase immunohistochemical staining method. The normal control material was collected from a tissue bank of five organ donors. The degenerated disc material was from twelve patients operated on for painful degenerative disc disease, and herniated disc tissue material was obtained from 115 patients operated on for sciatica. Normal control discs showed only TGFβ immunopositivity. All other factors studied were immunonegative in the control material. Prolapsed disc material was immunopositive for all factors studied, and this positivity was located either in the disc cells or in blood vessels. Furthermore, neovascularization was noted. Disc cell immunoreaction was shown in chondrocyte-like disc cells or in fibroblast-like disc cells, the former being expressed especially in conglomerates (clusters of disc cells). TGFβ receptor induction was prominent in prolapsed intervertebral disc tissue. In degenerated disc material, the expression of growth factors was analyzed in greater detail in various parts of the disc: nucleus pulposus, anterior annulus fibrosus and posterior annulus fibrosus. PDGF did not show any immunoreactivity, whereas all other studied growth factors were localized either in chondrocyte-like disc cells, often forming clusters, in fibroblast-like disc cells, or in small capillaries. Many of the studied degenerated discs showed tears in the posterior region of annulus fibrosus, but expression of immunopositive growth factors was detected throughout the entire disc. Furthermore, there was a difference in immunopositive cell types for different growth factors. The main conclusion of the thesis, supported by all substudies, is the occurrence of growth factors in disc cells. They may be actively participating in a network regulating disc cell growth, proliferation, extracellular matrix turnover, and neovascularization. Chondrocyte-like disc cells, in particular, expressed growth factors and oncoproteins, highlighting the importance of this cell type in the basic pathophysiologic events involved in disc degeneration and disc rearrangement. The thesis proposes a hypothesis for cellular remodelling in intervertebral disc tissue. In summary, the model presents an activation pattern of different growth factors at different intervertebral disc stages, mechanisms leading to neovascularization of the intervertebral disc in pathological conditions, and alteration of disc cell shape, especially in annulus fibrosus. Chondrocyte-like disc cells become more numerous, and these cells are capable of forming clusters, which appear to be regionally active within the disc. The alteration of the phenotype of disc cells expressing growth factors from fibroblast-like disc cells to chondrocyte-like cells in annulus fibrosus, and the numerous expression of growth factor expressing disc cells in nucleus pulposus, may be a key element both during pathological degeneration of the intervertebral disc, and during the healing process after trauma.
Resumo:
Liver transplantation is an established therapy for both acute and chronic liver failure. Despite excellent long-term outcome, graft dysfunction remains a problem affecting up to 15-30% of the recipients. The etiology of dysfunction is multifactorial, with ischemia-reperfusion injury regarded as one of the most important contributors. This thesis focuses on the inflammatory response during graft procurement and reperfusion in liver transplantation in adults. Activation of protein C was examined as a potential endogenous anti-inflammatory mechanism. The effects of inflammatory responses on graft function and outcome were investigated. Seventy adult patients undergoing liver transplantation in Helsinki University Central Hospital, and 50 multiorgan donors, were studied. Blood samples from the portal and the hepatic veins were drawn before graft procurement and at several time points during graft reperfusion to assess changes within the liver. Liver biopsies were taken before graft preservation and after reperfusion. Neutrophil and monocyte CD11b and L-selectin expression were analysed by flow cytometry. Plasma TNF-α, IL-6, IL-8, sICAM-1, and HMGB1 were determined by ELISA and Western-blotting. HMGB1 immunohistochemistry was performed on liver tissue specimens. Plasma protein C and activated protein C were determined by an enzyme-capture assay. Hepatic IL-8 release during graft procurement was associated with subsequent graft dysfunction, biliary in particular, in the recipient. Biliary marker levels increased only 5 7 days after transplantation. Thus, donor inflammatory response appears to influence recipient liver function with relatively long-lasting effects. Hepatic phagocyte activation and sequestration, with concomitant HMGB1 release, occurred during reperfusion. Neither phagocyte activation nor plasma cytokines correlated with postoperative graft function. Thus, activation of the inflammatory responses within the liver during reperfusion may be of minor clinical significance. However, HMGB1 was released from hepatocytes and were also correlated with postoperative transaminase levels. Accordingly, HMGB1 appears to be a marker of hepatocellular injury.
Resumo:
Acute heart failure (AHF) is a complex syndrome associated with exceptionally high mortality. Still, characteristics and prognostic factors of contemporary AHF patients have been inadequately studied. Kidney function has emerged as a very powerful prognostic risk factor in cardiovascular disease. This is believed to be the consequence of an interaction between the heart and kidneys, also termed the cardiorenal syndrome, the mechanisms of which are not fully understood. Renal insufficiency is common in heart failure and of particular interest for predicting outcome in AHF. Cystatin C (CysC) is a marker of glomerular filtration rate with properties making it a prospective alternative to the currently used measure creatinine for assessment of renal function. The aim of this thesis is to characterize a representative cohort of patients hospitalized for AHF and to identify risk factors for poor outcome in AHF. In particular, the role of CysC as a marker of renal function is evaluated, including examination of the value of CysC as a predictor of mortality in AHF. The FINN-AKVA (Finnish Acute Heart Failure) study is a national prospective multicenter study conducted to investigate the clinical presentation, aetiology and treatment of, as well as concomitant diseases and outcome in, AHF. Patients hospitalized for AHF were enrolled in the FINN-AKVA study, and mortality was followed for 12 months. The mean age of patients with AHF is 75 years and they frequently have both cardiovascular and non-cardiovascular co-morbidities. The mortality after hospitalization for AHF is high, rising to 27% by 12 months. The present study shows that renal dysfunction is very common in AHF. CysC detects impaired renal function in forty percent of patients. Renal function, measured by CysC, is one of the strongest predictors of mortality independently of other prognostic risk markers, such as age, gender, co-morbidities and systolic blood pressure on admission. Moreover, in patients with normal creatinine values, elevated CysC is associated with a marked increase in mortality. Acute kidney injury, defined as an increase in CysC within 48 hours of hospital admission, occurs in a significant proportion of patients and is associated with increased short- and mid-term mortality. The results suggest that CysC can be used for risk stratification in AHF. Markers of inflammation are elevated both in heart failure and in chronic kidney disease, and inflammation is one of the mechanisms thought to mediate heart-kidney interactions in the cardiorenal syndrome. Inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) correlate very differently to markers of cardiac stress and renal function. In particular, TNF-α showed a robust correlation to CysC, but was not associated with levels of NT-proBNP, a marker of hemodynamic cardiac stress. Compared to CysC, the inflammatory markers were not strongly related to mortality in AHF. In conclusion, patients with AHF are elderly with multiple co-morbidities, and renal dysfunction is very common. CysC demonstrates good diagnostic properties both in identifying impaired renal function and acute kidney injury in patients with AHF. CysC, as a measure of renal function, is also a powerful prognostic marker in AHF. CysC shows promise as a marker for assessment of kidney function and risk stratification in patients hospitalized for AHF.
Resumo:
The transesterification of methyl salicylate with phenol has been studied in vapour phase over solid acid catalysts such as ZrO2, MoO3 and SO42- or Mo(VI) ions modified zirconia. The catalytic materials were prepared and characterized for their total surface acidity, BET surface area and powder XRD patterns. The effect of mole-ratio of the reactants, catalyst bed temperature, catalyst weight, flow-rate of reactants, WHSV and time-on-stream on the conversion (%) of phenol and selectivity (%) of salol has been investigated. A good yield (up to 70%) of salol with 90% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200 degrees C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of SO42- or Mo(VI) ions. The effect of poisoning of acid sites of SO42- or Mo(VI) ions modified zirconia on total surface acidity, powder XRD phases and catalytic activity was also studied. Possible reaction mechanisms for the formation of salol and diphenyl ether over acid sites are proposed.
Resumo:
This paper presents a study of kinematic and force singularities in parallel manipulators and closed-loop mechanisms and their relationship to accessibility and controllability of such manipulators and closed-loop mechanisms, Parallel manipulators and closed-loop mechanisms are classified according to their degrees of freedom, number of output Cartesian variables used to describe their motion and the number of actuated joint inputs. The singularities in the workspace are obtained by considering the force transformation matrix which maps the forces and torques in joint space to output forces and torques ill Cartesian space. The regions in the workspace which violate the small time local controllability (STLC) and small time local accessibility (STLA) condition are obtained by deriving the equations of motion in terms of Cartesian variables and by using techniques from Lie algebra.We show that for fully actuated manipulators when the number ofactuated joint inputs is equal to the number of output Cartesian variables, and the force transformation matrix loses rank, the parallel manipulator does not meet the STLC requirement. For the case where the number of joint inputs is less than the number of output Cartesian variables, if the constraint forces and torques (represented by the Lagrange multipliers) become infinite, the force transformation matrix loses rank. Finally, we show that the singular and non-STLC regions in the workspace of a parallel manipulator and closed-loop mechanism can be reduced by adding redundant joint actuators and links. The results are illustrated with the help of numerical examples where we plot the singular and non-STLC/non-STLA regions of parallel manipulators and closed-loop mechanisms belonging to the above mentioned classes. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS1) is an autoimmune disease caused by a loss-of function mutation in the autoregulator gene (AIRE). Patients with APECED suffer from chronic mucocutaneous candidosis (CMC) of the oral cavity and oesophagus often since early childhood. The patients are mainly colonized with Candida albicans and decades of exposure to antifungal agents have lead to the development of clinical and microbiological resistance in the treatment of CMC in the APECED patient population in Finland. A high incidence of oral squamous cell carcinoma is associated with oral CMC lesions in the APECED patients over the age of 25. The overall aim of this study was firstly, to investigate the effect of long-term azole exposure on the metabolism of oral C. albicans isolates from APECED patients with CMC and secondly, to analyse the specific molecular mechanisms that are responsible for these changes. The aim of the first study was to examine C. albicans strains from APECED patients and the level of cross-resistance to miconazole, the recommended topical compound for the treatment of oral candidosis. A total of 16% of the strains had decreased susceptibility to miconazole and all of these isolates had decreased susceptibility to fluconazole. Miconazole MICs also correlated with MICs to voriconazole and posaconazole. A significant positive correlation between the years of miconazole exposure and the MICs to azole antifungal agents was also found. These included azoles the patients had not been exposed to. The aim of our second study was to determine if the APECED patients are continuously colonized with the same C. albicans strains despite extensive antifungal treatment and to gain a deeper insight into the genetic changes leading to azole resistance. The strains were typed using MLST and our results confirmed that all patients were persistently colonized with the same or a genetically related strain despite antifungal treatment between isolations. No epidemic strains were found. mRNA expression was analysed by Northern blotting, protein level by western blotting, and TAC1 and ERG11 genes were sequenced. The main molecular mechanisms resulting in azole resistance were gain-of-function mutations in TAC1 leading to over expression of CDR1 and CDR2, genes linked to azole resistance. Several strains had also developed point mutations in ERG11, another gene linked to azole resistance. In the third study we used gas chromatography to test whether the level of carcinogenic acetaldehyde produced by C. albicans strains isolated from APECED patients were different from the levels produced by strains isolated from healthy controls and oral carcinoma patients. Acetaldehyde is a carcinogenic product of alcohol fermentation and metabolism in microbes associated with cancers of the upper digestive tract. In yeast, acetaldehyde is a by-product of the pyruvate bypass that converts pyruvate into acetyl-CoA during fermentation. Our results showed that strains isolated from APECED patients produced mutagenic levels of acetaldehyde in the presence of glucose (100mM, 18g/l) and the levels produced were significantly higher than those from strains isolated from controls and oral carcinoma patients. All strains in the study, however, were found to produce mutagenic levels of acetaldehyde in the presence of ethanol (11mM). The glucose and ethanol levels used in this study are equivalent to those found in food and beverages and our results highlight the role of dietary sugars and ethanol on carcinogenesis. The aims of our fourth study were to research the effect of growth conditions in the levels of acetaldehyde produced by C. albicans and to gain deeper insight into the role of different genes in the pyruvate-bypass in the production of high acetaldehyde levels. Acetaldehyde production in the presence of glucose increased by 17-fold under moderately hypoxic conditions compared to the levels produced under normoxic conditions. Under moderately hypoxic conditions acetaldehyde levels did not correlate with the expression of ADH1 and ADH2, genes catalyzing the oxidation of ethanol to acetaldehyde, or PDC11, the gene catalyzing the oxidation of pyruvate to acetaldehyde but correlated with the expression of down-stream genes ALD6 and ACS1. Our results highlight a problem where indiscriminate use of azoles may influence azole susceptibility and lead to the development of cross-resistance. Despite clinically successful treatment leading to relief of symptoms, colonization by C. albicans strains is persistent within APECED patients. Microevolution and point mutations that occur in strains may lead to the development of azole-resistant isolates and metabolic changes leading to increased production of carcinogenic acetaldehyde.
Resumo:
The protein kinases (PKs) belong to the largest single family of enzymes, phosphotransferases, which catalyze the phosphorylation of other enzymes and proteins and function primarily in signal transduction. Consequently, PKs regulate cell mechanisms such as growth, differentiation, and proliferation. Dysfunction of these cellular mechanisms may lead to cancer, a major predicament in health care. Even though there is a range of clinically available cancer-fighting drugs, increasing number of cancer cases and setbacks such as drug resistance, constantly keep cancer research active. At the commencement of this study an isophthalic acid derivative had been suggested to bind to the regulatory domain of protein kinase C (PKC). In order to investigate the biological effects and structure-activity relationships (SARs) of this new chemical entity, a library of compounds was synthesized. The best compounds induced apoptosis in human leukemia HL-60 cells and were not cytotoxic in Swiss 3T3 fibroblasts. In addition, the best apoptosis inducers were neither cytotoxic nor mutagenic. Furthermore, results from binding affinity assays of PKC isoforms revealed the pharmacophores of these isophthalic acid derivatives. The best inhibition constants of the tested compounds were measured to 210 nM for PKCα and to 530 nM for PKCδ. Among natural compounds targeting the regulatory domain of PKC, the target of bistramide A has been a matter of debate. It was initially found to activate PKCδ; however, actin was recently reported as the main target. In order to clarify and to further study the biological effects of bistramide A, the total syntheses of the natural compound and two isomers were performed. Biological assays of the compounds revealed accumulation of 4n polyploid cells as the primary mode of action and the compounds showed similar overall antiproliferative activities. However, each compound showed a distinct distribution of antimitotic effect presumably via actin binding, proapoptotic effect presumably via PKCδ, and pro-differentiation effect as evidenced by CD11b expression. Furthermore, it was shown that the antimitotic and proapoptotic effects of bistramide A were not secondary effects of actin binding but independent effects. The third aim in this study was to synthesize a library of a new class of urea-based type II inhibitors targeted at the kinase domain of anaplastic lymphoma kinase (ALK). The best compounds in this library showed IC50 values as low as 390 nM for ALK while the initial low cellular activities were successfully increased even by more than 70 times for NPM-ALK- positive BaF3 cells. More importantly, selective antiproliferative activity on ALK-positive cell lines was achieved; while the best compound affected the BaF3 and SU-DHL-1 cells with IC50 values of 0.5 and 0.8 μM, respectively, they were less toxic to the NPM-ALK-negative human leukemic cells U937 (IC50 = 3.2 μM) and BaF3 parental cells (IC50 = 5.4 μM). Furthermore, SAR studies of the synthesized compounds revealed functional groups and positions of the scaffold, which enhanced the enzymatic and cellular activities.
Resumo:
Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalyst with varying atomic ratio of Pt to Ti, namely, 1: 1, 2: 1, and 3: 1, is prepared by sol-gel method and its electrocatalytic activity toward oxygen-reduction reaction (ORR) is evaluated for the application in polymer electrolyte fuel cells (PEFCs). The optimum atomic ratio of Pt to Ti in Pt-TiO2/C and annealing temperature are established by cyclic voltammetry and fuel-cell-polarization studies. Pt-TiO2/C annealed at 750 degrees C with Pt and Ti in atomic ratio of 2: 1, namely, 750 Pt-TiO2/C (2: 1), shows enhanced electrocatalytic activity toward ORR. It is found that the incorporation of TiO2 with Pt ameliorates both electrocatalytic activity and stability of cathode in relation to pristine Pt cathode, currently being used in PEFCs. A power density of 0.75 W/cm(2) is achieved at 0.6 V for the PEFC with 750 Pt-TiO2/C (2: 1) as compared with 0.62 W/cm(2) at 0.6 V achieved with the PEFC comprising Pt/C as cathode catalyst while operating under identical conditions. Interestingly, carbon-supported Pt-TiO2 cathode exhibits only 6% loss in electrochemical surface area after 5000 potential cycles while it is as high as 25% for Pt/C. DOI: 10.1115/1.4002466]
Resumo:
Vaccines against Neisseria meningitidis group C are based on its alpha-2,9-linked polysialic acid capsular polysaccharide. This polysialic acid expressed on the surface of N. meningitidis and in the absence of specific antibody serves to evade host defense mechanisms. The polysialyltransferase (PST) that forms the group C polysialic acid (NmC PST) is located in the cytoplasmic membrane. Until recently, detailed characterization of bacterial polysialyltransferases has been hampered by a lack of availability of soluble enzyme preparations. We have constructed chimeras of the group C polysialyltransferase that catalyzes the formation alpha-2,9-polysialic acid as a soluble enzyme. We used site-directed mutagenesis to determine the region of the enzyme necessary for synthesis of the alpha-2,9 linkage. A chimera of NmB and NmC PSTs containing only amino acids 1 to 107 of the NmB polysialyltransferase catalyzed the synthesis of alpha-2,8-polysialic acid. The NmC polysialyltransferase requires an exogenous acceptor for catalytic activity. While it requires a minimum of a disialylated oligosaccharide to catalyze transfer, it can form high-molecular-weight alpha-2,9-polysialic acid in a nonprocessive fashion when initiated with an alpha-2,8-polysialic acid acceptor. De novo synthesis in vivo requires an endogenous acceptor. We attempted to reconstitute de novo activity of the soluble group C polysialyltransferase with membrane components. We found that an acapsular mutant with a defect in the polysialyltransferase produces outer membrane vesicles containing an acceptor for the alpha-2,9-polysialyltransferase. This acceptor is an amphipathic molecule and can be elongated to produce polysialic acid that is reactive with group C-specific antibody.
Resumo:
This paper contains a review of the physical properties of the undoped and alkali-doped C60 materials, including their crystal structure, electronic, optical and vibrational properties and the effect of pressure on the crystal and electronic structure. The mechanisms of superconductivity in alkali-doped C60 in terms of phonon mediated electron pairing vis-a-vis electronic interaction effects are discussed.
Resumo:
A distinctive characteristic of silver in oxygen incorporation of oxide thin films during pulsed laser ablation has been discovered. Optical emission spectroscopy studies of laser-induced plume of Ag-target indicates the presence of AgO species whose concentration increases with an increase in oxygen partial pressure. The formation of AgO in laser-plume has been found to be very useful for the realization of high temperature superconducting YBa2Cu3O7-delta (YBCO) and giant magnetoresistive La0.7MnO3-delta (LMO) thin films with dramatically superior quality if the target materials contained a small amount of silver. The improvement in the quality of these films is brought about by the supply of atomic oxygen to oxide lattices during their formation. This becomes possible due to the fact that Ag, after it is ablated with other constituent materials in the target, gets moderately oxidized in an oxygen atmosphere and the oxidized species dissociate back into Ag and nascent O at the substrate surface. The nascent oxygen is very highly reactive and is easily assimilated into the lattice of these compounds. (C) 1997 Elsevier Science S.A.
Resumo:
Dimethylzine (DMZn) was used as a p-type dopant in GaAs grown by low pressure metalorganic vapor phase epitaxy using trimethylgallium and arsine (AsH3) as source materials, The hole carrier concentrations and zinc (Zn) incorporation efficiency are studied by using the Hall effect, electrochemical capacitance voltage profiler and photoluminescence (PL) spectroscopy, The influence of growth parameters such as DMZn mole fraction, growth temperature, and AsH, mole fraction on the Zn incorporation have been studied. The hole concentration increases with increasing DMZn and AsH3 mole fraction and decreases with increasing growth temperature. This can be explained by vacancy control model. The PL experiments were carried out as a function of hole concentration (10(17)-1.5 x 10(20) cm(-3)). The main peak shifted to lower energy and the full width at half maximum (FWHM) increases with increasing hole concentrations. We have obtained an empirical relation for FWHM of PL, Delta E(p)(eV) = 1.15 x 10(-8)p(1/3). We also obtained an empirical relation for the band gap shrinkage, Delta E-g in Zn doped GaAs as a function of hole concentration. The value of Delta E-g(eV) = -2.75 x 10(-8)p(1/3), indicates a significant band gap shrinkage at high doping levels, These relations are considered to provide a useful tool to determine the hole concentration in Zn doped GaAs by low temperature PL measurement. The hole concentration increases with increasing AsH3 mole fraction and the main peak is shifted to a lower energy side. This can be explained also by the vacancy control model. As the hole concentration is increased above 3.8 x 10(18) cm(-3), a shoulder peak separated from the main peak was observed in the PL spectra and disappears at higher concentrations. (C) 1997 American Institute of Physics.
Resumo:
Silane (SiH4) was used as an n-type dopant in GaAs grown by low pressure metalorganic vapor phase epitaxy using trimethylgallium (TMGa) and arsine (AsH3) as source materials. The electron carrier concentrations and silicon (Si) incorporation efficiency are studied by using Hall effect, electrochemical capacitance voltage profiler and low temperature photoluminescence (LTPL) spectroscopy. The influence of growth parameters, such as SiH4 mole fraction, growth temperature, TMGa and AsH3 mole fractions on the Si incorporation efficiency have been studied. The electron concentration increases with increasing SIH4 mole fraction, growth temperature, and decreases with increasing TMGa and AsH3 mole fractions. The decrease in electron concentration with increasing TMGa can be explained by vacancy control model. The PL experiments were carried out as a function of electron concentration (10(17) - 1.5 x 10(18) cm(-3)). The PL main peak shifts to higher energy and the full width at half maximum (FWHM) increases with increasing electron concentrations. We have obtained an empirical relation for FWHM of PL, Delta E(n) (eV) = 1.4 x 10(-8) n(1/3). We also obtained an empirical relation for the band gap shrinkage, Delta E-g in Si-doped GaAs as a function of electron concentration. The value of Delta E-g (eV) = -2.75 x 10(-8) n(1/3), indicates a significant band gap shrinkage at high doping levels. These relations are considered to provide a useful tool to determine the electron concentration in Si-doped GaAs by low temperature PL measurement. The electron concentration decreases with increasing TMGa and AsH3 mole fractions and the main peak shifts to the lower energy side. The peak shifts towards the lower energy side with increasing TMGa variation can also be explained by vacancy control model. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be similar to 10% after 7000 accelerated potential-cycles as against similar to 60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand > 10 000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer.